Gesture recognition method integrating multimodal inter-frame motion and shared attention weights

Guardado en:
Detalles Bibliográficos
Publicado en:Discover Artificial Intelligence vol. 5, no. 1 (Dec 2025), p. 405
Autor principal: Lu, Qiyuan
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3288264917
003 UK-CbPIL
022 |a 2731-0809 
024 7 |a 10.1007/s44163-025-00653-7  |2 doi 
035 |a 3288264917 
045 2 |b d20251201  |b d20251231 
100 1 |a Lu, Qiyuan  |u Lanzhou City University, Art and Design School, Lanzhou, China (GRID:grid.464358.8) (ISNI:0000 0004 6479 2641) 
245 1 |a Gesture recognition method integrating multimodal inter-frame motion and shared attention weights 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a To improve the accuracy and precision of gesture recognition, this study improves YOLOv5 by incorporating a coordinate attention mechanism and a bidirectional feature pyramid network. Based on the improved YOLOv5, a static gesture recognition model is constructed. In addition, this study introduces a multimodal inter-frame motion attention weight module to enhance the model’s ability to recognize dynamic gestures. In the performance evaluation experiments, the proposed model achieves an area under the receiver operating characteristic curve of 0.94, a harmonic mean of 96.4%, and an intersection over union of 0.9. The accuracy of static gesture recognition reaches 100%, while the average accuracy of dynamic gesture recognition achieves 95.7%, which significantly outperforms the comparison models. These results demonstrate that the proposed gesture recognition model offers high accuracy for static gestures and reliable recognition performance for dynamic gestures. This approach provides a potential method and perspective for improving human–computer interaction in virtual reality and intelligent assistance scenarios. 
653 |a Forgery 
653 |a Research methodology 
653 |a Accuracy 
653 |a Neural networks 
653 |a Semantics 
653 |a Medical research 
773 0 |t Discover Artificial Intelligence  |g vol. 5, no. 1 (Dec 2025), p. 405 
786 0 |d ProQuest  |t Research Library 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3288264917/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3288264917/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3288264917/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch