CTFN: Multistage CNN‐Transformer Fusion Network for ECG Authentication

Guardado en:
Bibliografiske detaljer
Udgivet i:IET Biometrics vol. 2025, no. 1 (2025)
Hovedforfatter: Jia, Heng
Andre forfattere: Zhao, Zhidong, Zhang, Yefei, Zhang, Xianfei, Deng, Yanjun, Wang, Yongguang, Wang, Hao, Jiao, Pengfei
Udgivet:
John Wiley & Sons, Inc.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3288469791
003 UK-CbPIL
022 |a 2047-4938 
022 |a 2047-4946 
024 7 |a 10.1049/bme2/8757767  |2 doi 
035 |a 3288469791 
045 2 |b d20250101  |b d20251231 
084 |a 186536  |2 nlm 
100 1 |a Jia, Heng  |u School of Cyberspace, , Hangzhou Dianzi University, , Hangzhou, , , China, <url href="http://hdu.edu.cn">hdu.edu.cn</url> 
245 1 |a CTFN: Multistage CNN‐Transformer Fusion Network for ECG Authentication 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a In the face of the mounting challenges posed by cybersecurity threats, there is an imperative for the development of robust identity authentication systems to safeguard sensitive user data. Conventional biometric authentication methods, such as fingerprinting and facial recognition, are vulnerable to spoofing attacks. In contrast, electrocardiogram (ECG) signals offer distinct advantages as dynamic, “liveness”‐assured biomarkers, exhibiting individual specificity. This study proposes a novel fusion network model, the convolutional neural network (CNN)‐transformer fusion network (CTFN), to achieve high‐precision ECG‐based identity authentication by synergizing local feature extraction and global signal correlation analysis. The proposed framework integrates a multistage enhanced CNN to capture fine‐grained local patterns in ECG morphology and a transformer encoder to model long‐range dependencies in heartbeat sequences. An adaptive weighting mechanism dynamically optimizes the contributions of both modules during feature fusion. The efficacy of CTFN was evaluated in three critical real‐world scenarios: single/multi‐heartbeat authentication, cross‐temporal consistency, and emotional variability resistance. The evaluation was conducted on 283 subjects from four public ECG databases: CYBHi, PTB, ECG‐ID, and MIT‐BIH. The CYBHi dataset revealed that CTFN exhibited a state‐of‐the‐art recognition accuracy of 98.46%, 80.95%, and 90.76%, respectively, signifying its remarkable performance. Notably, the model attained a 100% authentication accuracy rate using only six heartbeats. This represents a 25% decrease in input requirements when compared to prior works, while concurrently maintaining its robust performance against physiological variations induced by emotional states or temporal gaps. These results demonstrate that CTFN significantly advances the practicality of ECG biometrics by balancing high accuracy with minimal data acquisition demands, offering a scalable and spoof‐resistant solution for secure authentication systems. 
610 4 |a CNN 
653 |a Physiology 
653 |a Feature extraction 
653 |a Face recognition 
653 |a Emotional factors 
653 |a Accuracy 
653 |a Electrocardiography 
653 |a Datasets 
653 |a Data acquisition 
653 |a Wavelet transforms 
653 |a Spoofing 
653 |a Fingerprinting 
653 |a Biometrics 
653 |a Pattern recognition 
653 |a Artificial neural networks 
653 |a Signal processing 
653 |a EKG 
653 |a Performance evaluation 
653 |a Heart rate 
653 |a Emotions 
653 |a Data processing 
653 |a Experiments 
653 |a Neural networks 
653 |a Databases 
653 |a Biomarkers 
653 |a Algorithms 
653 |a Robustness (mathematics) 
653 |a Authentication 
653 |a Cybersecurity 
653 |a Correlation analysis 
700 1 |a Zhao, Zhidong  |u School of Cyberspace, , Hangzhou Dianzi University, , Hangzhou, , , China, <url href="http://hdu.edu.cn">hdu.edu.cn</url> 
700 1 |a Zhang, Yefei  |u School of Cyberspace, , Hangzhou Dianzi University, , Hangzhou, , , China, <url href="http://hdu.edu.cn">hdu.edu.cn</url> 
700 1 |a Zhang, Xianfei  |u School of Cyberspace, , Hangzhou Dianzi University, , Hangzhou, , , China, <url href="http://hdu.edu.cn">hdu.edu.cn</url> 
700 1 |a Deng, Yanjun  |u School of Cyberspace, , Hangzhou Dianzi University, , Hangzhou, , , China, <url href="http://hdu.edu.cn">hdu.edu.cn</url> 
700 1 |a Wang, Yongguang  |u Department of Cardiology, , Rui’an People’s Hospital, , Wenzhou, , , China 
700 1 |a Wang, Hao  |u School of Cyberspace, , Hangzhou Dianzi University, , Hangzhou, , , China, <url href="http://hdu.edu.cn">hdu.edu.cn</url> 
700 1 |a Jiao, Pengfei  |u School of Cyberspace, , Hangzhou Dianzi University, , Hangzhou, , , China, <url href="http://hdu.edu.cn">hdu.edu.cn</url> 
773 0 |t IET Biometrics  |g vol. 2025, no. 1 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3288469791/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3288469791/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3288469791/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch