Achieving Wide-Temperature-Range Physical and Chemical Hydrogen Sorption in a Structural Optimized Mg/N-Doped Porous Carbon Nanocomposite

Guardado en:
Bibliografiske detaljer
Udgivet i:Nano-Micro Letters vol. 18, no. 1 (Dec 2026), p. 94
Hovedforfatter: Li, Yinghui
Andre forfattere: Ren, Li, Li, Zi, Yao, Yingying, Lin, Xi, Ding, Wenjiang, Ferrari, Andrea C., Zou, Jianxin
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3289651193
003 UK-CbPIL
022 |a 2311-6706 
022 |a 2150-5551 
024 7 |a 10.1007/s40820-025-01931-w  |2 doi 
035 |a 3289651193 
045 2 |b d20261201  |b d20261231 
100 1 |a Li, Yinghui  |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); Shanghai Jiao Tong University, National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) 
245 1 |a Achieving Wide-Temperature-Range Physical and Chemical Hydrogen Sorption in a Structural Optimized Mg/N-Doped Porous Carbon Nanocomposite 
260 |b Springer Nature B.V.  |c Dec 2026 
513 |a Journal Article 
520 3 |a Highlights<list list-type="bullet"><list-item></list-item>The as-synthesized rN-pC exhibited H2 uptake of ~0.9 wt% at 77 K and ultralow pressure of ~0.1 bar, with an isosteric adsorption enthalpy (Qst) of ~14 kJ mol-1 H2 at zero coverage.<list-item>The 60MgH2@rN-pC started to decompose at 175 °C and released H2 of 3.38 wt% at 300 °C within 30 min, which showed outstanding desorption kinetics of MgH2 among Mg-carbon material nanocomposites.</list-item><list-item>The drawback of nanoconfinement scaffolds that cannot store hydrogen was firstly overcome.</list-item>Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics, kinetics, and cycling stability of hydrogen storage materials. The introduction of supporting scaffolds usually causes a reduction in the total hydrogen storage capacity due to “dead weight.” Here, we synthesize an optimized N-doped porous carbon (rN-pC) without heavy metal as supporting scaffold to confine Mg/MgH2 nanoparticles (Mg/MgH2@rN-pC). rN-pC with 60 wt% loading capacity of Mg (denoted as 60&#xa0;Mg@rN-pC) can adsorb and desorb 0.62 wt% H2 on the rN-pC scaffold. The nanoconfined MgH2 can be chemically dehydrided at 175&#xa0;°C, providing ~ 3.59 wt% H2 with fast kinetics (fully dehydrogenated at 300&#xa0;°C within 15&#xa0;min). This study presents the first realization of nanoconfined Mg-based system with adsorption-active scaffolds. Besides, the nanoconfined MgH2 formation enthalpy is reduced to ~ 68&#xa0;kJ&#xa0;mol−1 H2 from ~ 75&#xa0;kJ&#xa0;mol−1 H2 for pure MgH2. The composite can be also compressed to nanostructured pellets, with volumetric H2 density reaching 33.4&#xa0;g L−1 after 500&#xa0;MPa compression pressure, which surpasses the 24&#xa0;g L−1 volumetric capacity of 350&#xa0;bar compressed H2. Our approach can be implemented to the design of hybrid H2 storage materials with enhanced capacity and desorption rate. 
651 4 |a United States--US 
651 4 |a China 
653 |a Nitrates 
653 |a Hydrogen storage materials 
653 |a Dehydrogenation 
653 |a Carbon 
653 |a Temperature 
653 |a Nanocomposites 
653 |a Heavy metals 
653 |a Adsorption 
653 |a Microscopy 
653 |a Desorption 
653 |a Storage capacity 
653 |a Enthalpy 
653 |a Alternative energy sources 
653 |a Kinetics 
653 |a Graphene 
653 |a Hydrogenation 
653 |a Scaffolds 
653 |a Synthesis 
653 |a Composite materials 
700 1 |a Ren, Li  |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science &amp; Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); Shanghai Jiao Tong University, National Engineering Research Center of Light Alloys Net Forming &amp; State Key Laboratory of Metal Matrix Composites, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) 
700 1 |a Li, Zi  |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science &amp; Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); Shanghai Jiao Tong University, National Engineering Research Center of Light Alloys Net Forming &amp; State Key Laboratory of Metal Matrix Composites, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) 
700 1 |a Yao, Yingying  |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science &amp; Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); Shanghai Jiao Tong University, National Engineering Research Center of Light Alloys Net Forming &amp; State Key Laboratory of Metal Matrix Composites, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) 
700 1 |a Lin, Xi  |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science &amp; Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) 
700 1 |a Ding, Wenjiang  |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science &amp; Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); Shanghai Jiao Tong University, National Engineering Research Center of Light Alloys Net Forming &amp; State Key Laboratory of Metal Matrix Composites, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) 
700 1 |a Ferrari, Andrea C.  |u University of Cambridge, Cambridge Graphene Centre, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000 0001 2188 5934) 
700 1 |a Zou, Jianxin  |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science &amp; Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); Shanghai Jiao Tong University, National Engineering Research Center of Light Alloys Net Forming &amp; State Key Laboratory of Metal Matrix Composites, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); University of Cambridge, Cambridge Graphene Centre, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000 0001 2188 5934) 
773 0 |t Nano-Micro Letters  |g vol. 18, no. 1 (Dec 2026), p. 94 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3289651193/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3289651193/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3289651193/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch