Achieving Wide-Temperature-Range Physical and Chemical Hydrogen Sorption in a Structural Optimized Mg/N-Doped Porous Carbon Nanocomposite
Guardado en:
| Udgivet i: | Nano-Micro Letters vol. 18, no. 1 (Dec 2026), p. 94 |
|---|---|
| Hovedforfatter: | |
| Andre forfattere: | , , , , , , |
| Udgivet: |
Springer Nature B.V.
|
| Fag: | |
| Online adgang: | Citation/Abstract Full Text Full Text - PDF |
| Tags: |
Ingen Tags, Vær først til at tagge denne postø!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3289651193 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2311-6706 | ||
| 022 | |a 2150-5551 | ||
| 024 | 7 | |a 10.1007/s40820-025-01931-w |2 doi | |
| 035 | |a 3289651193 | ||
| 045 | 2 | |b d20261201 |b d20261231 | |
| 100 | 1 | |a Li, Yinghui |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); Shanghai Jiao Tong University, National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) | |
| 245 | 1 | |a Achieving Wide-Temperature-Range Physical and Chemical Hydrogen Sorption in a Structural Optimized Mg/N-Doped Porous Carbon Nanocomposite | |
| 260 | |b Springer Nature B.V. |c Dec 2026 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Highlights<list list-type="bullet"><list-item></list-item>The as-synthesized rN-pC exhibited H2 uptake of ~0.9 wt% at 77 K and ultralow pressure of ~0.1 bar, with an isosteric adsorption enthalpy (Qst) of ~14 kJ mol-1 H2 at zero coverage.<list-item>The 60MgH2@rN-pC started to decompose at 175 °C and released H2 of 3.38 wt% at 300 °C within 30 min, which showed outstanding desorption kinetics of MgH2 among Mg-carbon material nanocomposites.</list-item><list-item>The drawback of nanoconfinement scaffolds that cannot store hydrogen was firstly overcome.</list-item>Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics, kinetics, and cycling stability of hydrogen storage materials. The introduction of supporting scaffolds usually causes a reduction in the total hydrogen storage capacity due to “dead weight.” Here, we synthesize an optimized N-doped porous carbon (rN-pC) without heavy metal as supporting scaffold to confine Mg/MgH2 nanoparticles (Mg/MgH2@rN-pC). rN-pC with 60 wt% loading capacity of Mg (denoted as 60 Mg@rN-pC) can adsorb and desorb 0.62 wt% H2 on the rN-pC scaffold. The nanoconfined MgH2 can be chemically dehydrided at 175 °C, providing ~ 3.59 wt% H2 with fast kinetics (fully dehydrogenated at 300 °C within 15 min). This study presents the first realization of nanoconfined Mg-based system with adsorption-active scaffolds. Besides, the nanoconfined MgH2 formation enthalpy is reduced to ~ 68 kJ mol−1 H2 from ~ 75 kJ mol−1 H2 for pure MgH2. The composite can be also compressed to nanostructured pellets, with volumetric H2 density reaching 33.4 g L−1 after 500 MPa compression pressure, which surpasses the 24 g L−1 volumetric capacity of 350 bar compressed H2. Our approach can be implemented to the design of hybrid H2 storage materials with enhanced capacity and desorption rate. | |
| 651 | 4 | |a United States--US | |
| 651 | 4 | |a China | |
| 653 | |a Nitrates | ||
| 653 | |a Hydrogen storage materials | ||
| 653 | |a Dehydrogenation | ||
| 653 | |a Carbon | ||
| 653 | |a Temperature | ||
| 653 | |a Nanocomposites | ||
| 653 | |a Heavy metals | ||
| 653 | |a Adsorption | ||
| 653 | |a Microscopy | ||
| 653 | |a Desorption | ||
| 653 | |a Storage capacity | ||
| 653 | |a Enthalpy | ||
| 653 | |a Alternative energy sources | ||
| 653 | |a Kinetics | ||
| 653 | |a Graphene | ||
| 653 | |a Hydrogenation | ||
| 653 | |a Scaffolds | ||
| 653 | |a Synthesis | ||
| 653 | |a Composite materials | ||
| 700 | 1 | |a Ren, Li |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); Shanghai Jiao Tong University, National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) | |
| 700 | 1 | |a Li, Zi |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); Shanghai Jiao Tong University, National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) | |
| 700 | 1 | |a Yao, Yingying |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); Shanghai Jiao Tong University, National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) | |
| 700 | 1 | |a Lin, Xi |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) | |
| 700 | 1 | |a Ding, Wenjiang |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); Shanghai Jiao Tong University, National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) | |
| 700 | 1 | |a Ferrari, Andrea C. |u University of Cambridge, Cambridge Graphene Centre, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000 0001 2188 5934) | |
| 700 | 1 | |a Zou, Jianxin |u Shanghai Jiao Tong University, Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); Shanghai Jiao Tong University, National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of Metal Matrix Composites, Shanghai, People’s Republic of China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293); University of Cambridge, Cambridge Graphene Centre, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000 0001 2188 5934) | |
| 773 | 0 | |t Nano-Micro Letters |g vol. 18, no. 1 (Dec 2026), p. 94 | |
| 786 | 0 | |d ProQuest |t Materials Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3289651193/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text |u https://www.proquest.com/docview/3289651193/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3289651193/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch |