A GPU optimization strategy in nonlinear explicit dynamic analysis for reinforced concrete buildings with composite elements

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Computational Design and Engineering vol. 13, no. 1 (Jan 2026), p. 141-158
Autor principal: Liu, Lanqi
Otros Autores: Chen, Yongqiang, Wang, Xianlei, Su, Zhongliang, Chen, Pu
Publicado:
Oxford University Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3289770396
003 UK-CbPIL
022 |a 2288-5048 
024 7 |a 10.1093/jcde/qwaf127  |2 doi 
035 |a 3289770396 
045 2 |b d20260101  |b d20260131 
100 1 |a Liu, Lanqi  |u School of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China 
245 1 |a A GPU optimization strategy in nonlinear explicit dynamic analysis for reinforced concrete buildings with composite elements 
260 |b Oxford University Press  |c Jan 2026 
513 |a Journal Article 
520 3 |a The explicit integration for nonlinear structural dynamics in finite element analysis (FEA) is inherently decoupled in its algebraic equations, making it well-suited for parallel computation. This paper presents a novel and efficient central processing unit (CPU)/graphics processing unit (GPU) implementation and optimization strategy for the explicit integration of complex tall buildings subjected to seismic loading for the design software YJK. The presence of multiple element types and distinct material constitutive laws in finite element (FE) models of reinforced concrete building structures results in significant computational overhead and branching. In this paper, the calculation-related data for a FE model is reorganized into several data-domains, each corresponding to sole element type and sole material constitutive law. To achieve higher computational performance, a concurrent kernel execution strategy is implemented on the GPU platform. Instead of relying on the default, inefficient kernel scheduler of GPU, we developed an efficient scheduler to maximize GPU utilization. This scheduler first measures resource requirements of each kernel, then ranks and divides them into sub-kernels for concurrent execution. Performance tests on practical engineering project demonstrate that, without compromising accuracy, the proposed optimization strategy achieves up to 328.66 × performance improvement over CPU serial implementation, and up to 4.76 × and 1.59 × improvements over a simpler GPU implementation and the default GPU scheduler, respectively. 
653 |a Earthquake loads 
653 |a Finite element method 
653 |a Parallel processing 
653 |a Central processing units--CPUs 
653 |a Tall buildings 
653 |a Reinforced concrete 
653 |a Graphics processing units 
653 |a Nonlinear dynamics 
653 |a Performance tests 
653 |a Optimization 
700 1 |a Chen, Yongqiang  |u School of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China 
700 1 |a Wang, Xianlei  |u YJK Building Software Limited, Beijing 100013, China 
700 1 |a Su, Zhongliang  |u YJK Building Software Limited, Beijing 100013, China 
700 1 |a Chen, Pu  |u School of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; State Key Laboratory for Turbulence & Complex Systems, Peking University, Beijing 100871, China 
773 0 |t Journal of Computational Design and Engineering  |g vol. 13, no. 1 (Jan 2026), p. 141-158 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3289770396/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3289770396/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch