Predictive Understanding of Wildfire Ignitions Across the Western United States

Zapisane w:
Opis bibliograficzny
Wydane w:Earth's Future vol. 14, no. 1 (Jan 1, 2026)
1. autor: Pourmohamad, Yavar
Kolejni autorzy: Abatzoglou, John T., Fleishman, Erica, Belval, Erin, Short, Karen C., Williamson, Matthew, Perlmutter, Michael, Seydi, Seyd Teymoor, Sadegh, Mojtaba
Wydane:
John Wiley & Sons, Inc.
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3289956618
003 UK-CbPIL
022 |a 2328-4277 
024 7 |a 10.1029/2025EF006935  |2 doi 
035 |a 3289956618 
045 0 |b d20260101 
084 |a 243349  |2 nlm 
100 1 |a Pourmohamad, Yavar  |u Department of Civil Engineering, Boise State University, Boise, ID, USA 
245 1 |a Predictive Understanding of Wildfire Ignitions Across the Western United States 
260 |b John Wiley & Sons, Inc.  |c Jan 1, 2026 
513 |a Journal Article 
520 3 |a Wildfires have increasingly affected human and natural systems across the western United States (WUS) in recent decades. Given that the majority of ignitions are human‐caused and potentially preventable, improving the ability to predict fire occurrence is critical for effective wildfire prevention and risk mitigation. We used over 500,000 wildfire ignition records from 2000 to 2020 to develop machine learning models that predict daily ignition probability across the WUS and incorporate a wide range of physical, biological, social, and administrative variables. A key innovation of this work is development of novel sampling techniques for representing ignition absence. Unlike traditional purely random sampling or hyper‐sampling, which does not account for temporally autocorrelated factors (such as droughts, insect outbreaks, and heatwaves) and spatially autocorrelated factors (such as proximity to human settlements, infrastructure presence, and fuel type), we introduce spatially and temporally stratified sampling of ignition absence. By drawing absence samples near the location and time of historical ignitions, we better captured the complex environmental and anthropogenic conditions associated with fire occurrence or lack thereof. Models trained without stratified sampling produced ignition probability maps that consistently overestimated fire risk during high fire danger periods, whereas models incorporating stratified fire absence samples more accurately captured the spatial and temporal variability of fire potential and achieved predictive accuracies exceeding 95%. In addition to operational utility for fire prevention and resource allocation, our approach offers insights into the drivers of wildfire ignitions and highlights the value of incorporating spatial and temporal structure in absence sampling for wildfire modeling. 
651 4 |a United States--US 
653 |a Resource allocation 
653 |a Temporal variability 
653 |a Fire hazards 
653 |a Models 
653 |a Topography 
653 |a Heat waves 
653 |a Drought 
653 |a Population density 
653 |a Winter 
653 |a Insects 
653 |a Machine learning 
653 |a Time series 
653 |a Fire prevention 
653 |a Random sampling 
653 |a Autocorrelation 
653 |a Sampling techniques 
653 |a Human settlements 
653 |a Wildfires 
653 |a Vegetation 
653 |a Fire danger 
653 |a Sampling methods 
653 |a Statistical sampling 
653 |a Ignition 
653 |a Probability 
653 |a Pest outbreaks 
653 |a Forest & brush fires 
653 |a Land use planning 
653 |a Risk reduction 
653 |a Environmental 
700 1 |a Abatzoglou, John T.  |u Management of Complex Systems Department, University of California, Merced, CA, USA 
700 1 |a Fleishman, Erica  |u College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA 
700 1 |a Belval, Erin  |u USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA 
700 1 |a Short, Karen C.  |u USDA Forest Service, Rocky Mountain Research Station, Missoula, MT, USA 
700 1 |a Williamson, Matthew  |u Human‐Environment Systems, Boise State University, Boise, ID, USA 
700 1 |a Perlmutter, Michael  |u Department of Mathematics, Boise State University, Boise, ID, USA 
700 1 |a Seydi, Seyd Teymoor  |u Department of Civil Engineering, Boise State University, Boise, ID, USA 
700 1 |a Sadegh, Mojtaba  |u Department of Civil Engineering, Boise State University, Boise, ID, USA 
773 0 |t Earth's Future  |g vol. 14, no. 1 (Jan 1, 2026) 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3289956618/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3289956618/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3289956618/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch