MARC

LEADER 00000nab a2200000uu 4500
001 3289985012
003 UK-CbPIL
022 |a 1931-7573 
022 |a 1556-276X 
024 7 |a 10.1186/s11671-025-04422-4  |2 doi 
035 |a 3289985012 
045 2 |b d20261201  |b d20261231 
084 |a 243536  |2 nlm 
100 1 |a Sheela, M. Sahaya  |u Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Department of ECE, Chennai, India (GRID:grid.464713.3) (ISNI:0000 0004 1777 5670) 
245 1 |a Enhanced plasmonic biosensors with machine learning for ultra-sensitive detection 
260 |b Springer Nature B.V.  |c Dec 2026 
513 |a Journal Article 
520 3 |a Plasmonic biosensors, particularly Surface Plasmon Resonance and Surface-Enhanced Raman Spectroscopy, have gained significant attention for real-time, label-free biochemical detection. However, optimizing these sensors for maximum sensitivity and selectivity remains a challenge due to their complex plasmonic interactions with different biomolecules. This work proposes SERA, an AI driven framework that integrates machine learning algorithms with experimental Surface-Enhanced Raman Spectroscopy (SERS) data for the predictive modeling and optimization of plasmonic sensing performance. Using supervised learning techniques, the ML models are trained on a spectral dataset - SERS-DB obtained from various plasmonic nanostructures. The model predicts key parameters such as resonance shift, intensity variations, and molecular binding efficiency, allowing for rapid optimization of biosensor designs without extensive trial-and-error experimentation. This approach accelerates plasmonic biosensor development and enables real-time adaptive sensing based on live data. The results through evaluation on the SERS-DB database with 420 samples for training and 180 for the testing phase, 6 classes like Thiacloprid, Imidacloprid, Thiamethoxam, Nitenpyram, Tetrahydrofolate, and Dihydrofolate, an accuracy of 92%, precision & recall of 90%, and F1-score of 92% were attained. The SERA model excelled with an overall score of around 0.90 in all 6 classes, proving additional superiority in biosensing applications. Further comparative analysis of the proposed approach with conventional methods underscores the best performance in accuracy with 92%, sensitivity, 1000 nm/RIU, and 95% in optimization efficiency. Overall, this research highlights a scalable and cost-effective strategy for advancing biosensor technology in medical diagnostics, environmental monitoring, and bio photonics. 
653 |a Plasmonics 
653 |a Imidacloprid 
653 |a Environmental monitoring 
653 |a Accuracy 
653 |a Gold 
653 |a Comparative analysis 
653 |a Deep learning 
653 |a Optimization techniques 
653 |a Supervised learning 
653 |a Silver 
653 |a Biosensors 
653 |a Thiamethoxam 
653 |a Tetrahydrofolic acid 
653 |a Machine learning 
653 |a Surface plasmon resonance 
653 |a Raman spectroscopy 
653 |a Graphene 
653 |a Research & development--R&D 
653 |a Spectroscopy 
653 |a Learning algorithms 
653 |a Medical technology 
653 |a Biomolecules 
653 |a Medical diagnosis 
653 |a Malaria 
653 |a Insecticides 
653 |a Resonance 
653 |a Spectrum analysis 
653 |a Sensitivity 
653 |a Prediction models 
653 |a Genetic algorithms 
653 |a Sensors 
653 |a Zinc oxides 
653 |a Optimization 
653 |a Design 
653 |a Optical properties 
653 |a Thiacloprid 
653 |a Real time 
653 |a Environmental 
700 1 |a Ponraj, A.  |u Easwari Engineering College, Department of ECE, Chennai,, India (GRID:grid.464713.3) (ISNI:0000 0004 1774 1876) 
700 1 |a Kumarganesh, S.  |u Knowledge Institute of Technology, Department of ECE, Salem, India (GRID:grid.464713.3) 
700 1 |a Thiyaneswaran, B.  |u Sona College of Technology, Department of ECE, Salem, India (GRID:grid.464713.3) (ISNI:0000 0004 1764 6625) 
700 1 |a Rishabavarthani, P.  |u Sri Ramakrishna Engineering College, Department of ECE, Coimbatore, India (GRID:grid.464713.3) (ISNI:0000 0004 1767 7042) 
700 1 |a Rajesh, I.  |u Knowledge Institute of Technology, Department of CSE, Salem, India (GRID:grid.464713.3) 
700 1 |a Pandey, Binay Kumar  |u Govind Ballabh Pant University of Agriculture and Technology Pantnagar, Department of Information Technology, College of Technology, Uttarakhand, India (GRID:grid.440691.e) (ISNI:0000 0001 0708 4444) 
700 1 |a Pandey, Digvijay  |u (Government of U.P.), Department of Technical Education Uttar Pradesh, Lucknow, India (GRID:grid.440691.e) 
700 1 |a Lelisho, Mesfin Esayas  |u Mizan-Tepi University, Department of Statistics, College of Natural and Computational Science, Tepi, Ethiopia (GRID:grid.449142.e) (ISNI:0000 0004 0403 6115) 
773 0 |t Nanoscale Research Letters  |g vol. 21, no. 1 (Dec 2026), p. 1 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3289985012/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3289985012/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3289985012/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch