Fully integrated hybrid multimode-multiwavelength photonic processor with picosecond latency

Guardado en:
Detalles Bibliográficos
Publicado en:Nature Communications vol. 17, no. 1 (2026), p. 28-39
Autor principal: Khaled, Ahmed
Otros Autores: Aadhi, A., Huang, Chaoran, Tait, Alexander N., Shastri, Bhavin J.
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3290014487
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-025-66561-7  |2 doi 
035 |a 3290014487 
045 2 |b d20260101  |b d20261231 
084 |a 145839  |2 nlm 
100 1 |a Khaled, Ahmed  |u Department of Physics, Engineering Physics & Astronomy, Centre for Nanophotonics, Queen’s University, Kingston, ON, Canada (ROR: https://ror.org/02y72wh86) (GRID: grid.410356.5) (ISNI: 0000 0004 1936 8331) 
245 1 |a Fully integrated hybrid multimode-multiwavelength photonic processor with picosecond latency 
260 |b Nature Publishing Group  |c 2026 
513 |a Journal Article 
520 3 |a High-speed signal processing is crucial for increasing the data throughput in next-generation communication systems, including multiple-input multiple-output (MIMO) networks, emerging 6G architectures, and beyond. However, system scaling inevitably increases hardware complexity, computational demands, and the challenges associated with digital signal processing (DSP). The physical limitations of electronic processors constrain computational throughput and increase DSP latency, creating a critical bottleneck. Photonic processors offer a compelling alternative, with inherent advantages of broad bandwidth, low loss, massive parallelism, and ultralow latency. Nevertheless, their scalability has been hindered by integration challenges, large device footprints, and on-chip multiplexing limits. Here, we present a scalable, monolithically integrated hybrid photonic processor that simultaneously leverages mode-division and wavelength-division multiplexing. The processor integrates adiabatic mode multiplexers, mode-selective microring resonators, and balanced multimode photodetectors on a single chip. We experimentally demonstrate real-time optical MIMO signal unscrambling at 5 Gb/s and radio frequency signal unjamming in phase-shift keying transmission, performed entirely in the analog optical domain with a processing latency of just 30 ps. This work opens a pathway toward energy-efficient, ultralow-latency processors for future wireless and optical communication networks.Researchers present a scalable hybrid photonic processor that uses mode- and wavelength-division multiplexing to overcome electronic limits, demonstrating ultralow latency and real-time signal processing for next-generation communication networks. 
653 |a Signal processing 
653 |a Wireless networks 
653 |a MIMO communication 
653 |a Signal generation 
653 |a Digital signal processing 
653 |a Microprocessors 
653 |a Phase shift keying 
653 |a Communication networks 
653 |a Energy efficiency 
653 |a Network latency 
653 |a Communications systems 
653 |a Computer applications 
653 |a Multiplexers 
653 |a Adiabatic 
653 |a Processors 
653 |a Photonics 
653 |a Digital signal processors 
653 |a Latency 
653 |a Real time 
653 |a Wavelength division multiplexing 
653 |a Radio signals 
653 |a Environmental 
700 1 |a Aadhi, A.  |u Department of Physics, Engineering Physics & Astronomy, Centre for Nanophotonics, Queen’s University, Kingston, ON, Canada (ROR: https://ror.org/02y72wh86) (GRID: grid.410356.5) (ISNI: 0000 0004 1936 8331); Optics and Photonics Centre, Indian Institute of Technology Delhi, New Delhi, India (ROR: https://ror.org/049tgcd06) (GRID: grid.417967.a) (ISNI: 0000 0004 0558 8755) 
700 1 |a Huang, Chaoran  |u Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (ROR: https://ror.org/00t33hh48) (GRID: grid.10784.3a) (ISNI: 0000 0004 1937 0482) 
700 1 |a Tait, Alexander N.  |u Smith Engineering, Electrical and Computer Engineering, Queen’s University, Kingston, ON, Canada (ROR: https://ror.org/02y72wh86) (GRID: grid.410356.5) (ISNI: 0000 0004 1936 8331) 
700 1 |a Shastri, Bhavin J.  |u Department of Physics, Engineering Physics & Astronomy, Centre for Nanophotonics, Queen’s University, Kingston, ON, Canada (ROR: https://ror.org/02y72wh86) (GRID: grid.410356.5) (ISNI: 0000 0004 1936 8331) 
773 0 |t Nature Communications  |g vol. 17, no. 1 (2026), p. 28-39 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3290014487/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3290014487/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3290014487/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch