Emerging frontiers in ecosystem and biodiversity monitoring using remote sensing and geographic information systems

Guardado en:
Detalles Bibliográficos
Publicado en:Global Journal of Environmental Science and Management vol. 11, no. 4 (Autumn 2025), p. 1791-1819
Autor principal: Zhidebayeva, A
Otros Autores: Syrlybekkyzy, S, Taizhanova, L, Koibakova, S, Altybaeva, Z, Koishina, A, Seidaliyeva, L, Mkilima, T
Publicado:
Solid Waste Engineering and Management Association, Faculty of Environment, University of Tehran
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3290412271
003 UK-CbPIL
022 |a 2383-3572 
022 |a 2383-3866 
024 7 |a 10.22034/gjesm.2025.04.23  |2 doi 
035 |a 3290412271 
045 2 |b d20251001  |b d20251231 
100 1 |a Zhidebayeva, A  |u Department of Ecology and Geology, Faculty of Engineering, Yessenov University, Aktau 130000, Kazakhstan 
245 1 |a Emerging frontiers in ecosystem and biodiversity monitoring using remote sensing and geographic information systems 
260 |b Solid Waste Engineering and Management Association, Faculty of Environment, University of Tehran  |c Autumn 2025 
513 |a Journal Article 
520 3 |a The accelerating biodiversity crisis, driven by climate change and intensifying anthropogenic pressures, demands accurate, scalable, and dynamic tools to monitor ecosystem health and biological diversity. Remote sensing and geographic information systems have long been pivotal in observing environmental conditions and measuring biodiversity, nonetheless, the fast-paced development of sensing technologies, analytical approaches, and computational power is greatly transforming their purpose in conservation science. This study provides a comprehensive synthesis of next-generation applications of remote sensing and geographic information systems in biodiversity and ecosystem monitoring. The study aimed to gather recent developments in the use of remote sensing and geographic information systems for biodiversity and ecosystem monitoring, thoroughly evaluate existing methods, recognize enduring challenges, and recommend innovative, technology-driven pathways for improving ecological assessments and conservation planning. A notable transition is taking place from standard land cover mapping towards assessing ecological functions, evaluating habitat quality, and detecting environmental changes in near real-time. Innovative technologies, including hyperspectral imaging, drone-based sensing, radar interferometry, threedimensional laser scanning, and small satellite constellations, are combined with sophisticated computational methods, featuring machine learning, deep learning, spatiotemporal data fusion, and cloud-based geo-processing. These developments are transforming applications ranging from automated species distribution modelling and ecosystem service mapping to structural-functional landscape phenotyping, habitat connectivity assessment, and predictive early-warning systems for biodiversity loss. The merging of datasets with differing resolutions, timeframes, and sensors is promoting the establishment of broad ecological intelligence, which contributes to adaptive conservation strategies and evidence-based environmental governance. Despite these advances, several challenges remain, including algorithmic bias, the harmonization of heterogeneous datasets, limited direct biodiversity proxies, and disparities in access to emerging technologies. Ethical considerations along with the integration of community-driven monitoring frameworks, are essential for ensuring that technological advancements are in harmony with global sustainability goals. Anticipating the future, the integration of sophisticated sensing technologies, artificial intelligence, and cloud computing platforms presents remarkable opportunities to transform biodiversity monitoring and conservation planning. By enabling predictive, adaptive, and near real-time decisionmaking, these innovations are reshaping strategies for environmental management and the development of resilient socio-ecological systems in the context of rapid global change. 
653 |a Geographical distribution 
653 |a Warning systems 
653 |a Conservation 
653 |a Spatiotemporal data 
653 |a Early warning systems 
653 |a Ecosystem services 
653 |a Mapping 
653 |a Computer applications 
653 |a Data integration 
653 |a Ecological function 
653 |a Satellite constellations 
653 |a Geographic information systems 
653 |a Machine learning 
653 |a Evaluation 
653 |a Remote sensing 
653 |a Environmental management 
653 |a Datasets 
653 |a Environmental changes 
653 |a Environmental quality 
653 |a Biodiversity loss 
653 |a Interferometry 
653 |a Ecosystems 
653 |a Artificial intelligence 
653 |a Biodiversity 
653 |a Real time 
653 |a Climate change 
653 |a Small satellites 
653 |a Environmental conditions 
653 |a Remote monitoring 
653 |a Radar imaging 
653 |a Environmental governance 
653 |a Land cover 
653 |a Deep learning 
653 |a Social-ecological systems 
653 |a Cloud computing 
653 |a Structure-function relationships 
653 |a Hyperspectral imaging 
653 |a Environmental 
700 1 |a Syrlybekkyzy, S  |u Department of Ecology and Geology, Faculty of Engineering, Yessenov University, Aktau 130000, Kazakhstan 
700 1 |a Taizhanova, L  |u Department of Ecology and Geology, Faculty of Engineering, Yessenov University, Aktau 130000, Kazakhstan 
700 1 |a Koibakova, S  |u Department of Ecology and Geology, Faculty of Engineering, Yessenov University, Aktau 130000, Kazakhstan 
700 1 |a Altybaeva, Z  |u Department of Ecology and Geology, Faculty of Engineering, Yessenov University, Aktau 130000, Kazakhstan 
700 1 |a Koishina, A 
700 1 |a Seidaliyeva, L 
700 1 |a Mkilima, T 
773 0 |t Global Journal of Environmental Science and Management  |g vol. 11, no. 4 (Autumn 2025), p. 1791-1819 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3290412271/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3290412271/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch