SlingBAG: point cloud-based iterative algorithm for large-scale 3D photoacoustic imaging

Guardado en:
Detalles Bibliográficos
Publicado en:Nature Communications vol. 17, no. 1 (2026), p. 128-141
Autor principal: Li, Shuang
Otros Autores: Wang, Yibing, Gao, Jian, Kim, Chulhong, Choi, Seongwook, Zhang, Yu, Chen, Qian, Yao, Yao, Li, Changhui
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3290767627
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-025-66855-w  |2 doi 
035 |a 3290767627 
045 2 |b d20260101  |b d20261231 
084 |a 145839  |2 nlm 
100 1 |a Li, Shuang  |u Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China (ROR: https://ror.org/02v51f717) (GRID: grid.11135.37) (ISNI: 0000 0001 2256 9319) 
245 1 |a SlingBAG: point cloud-based iterative algorithm for large-scale 3D photoacoustic imaging 
260 |b Nature Publishing Group  |c 2026 
513 |a Journal Article 
520 3 |a Large-scale 3D photoacoustic imaging has become increasingly important for both clinical and pre-clinical applications. Limited by cost and system complexity, only systems with sparsely-distributed sensors can be widely implemented, which necessitates advanced reconstruction algorithms to reduce artifacts. However, the high computing memory and time consumption of traditional iterative reconstruction (IR) algorithms is practically unacceptable for large-scale 3D photoacoustic imaging. Here, we propose a point cloud-based IR algorithm that reduces memory consumption by several orders, wherein the 3D photoacoustic scene is modeled as a series of Gaussian-distributed spherical sources stored in form of point cloud. During the IR process, not only are properties of each Gaussian source, including its peak intensity (initial pressure value), standard deviation (size) and mean (position) continuously optimized, but also each Gaussian source itself adaptively undergoes destroying, splitting, and duplication along the gradient direction. This method, named SlingBAG, the sliding Gaussian ball adaptive growth algorithm, enables high-quality large-scale 3D photoacoustic reconstruction with fast iteration and extremely low memory usage. We validated the SlingBAG algorithm in both simulation study and in vivo animal experiments.Researchers present SlingBAG, an iterative reconstruction algorithm for large-scale 3D photoacoustic imaging. It uses an adaptive point cloud model to achieve high-quality imaging from sparse data, notably cutting cost in both memory and time. 
653 |a Sparsity 
653 |a Iterative algorithms 
653 |a 3-D graphics 
653 |a Image reconstruction 
653 |a Algorithms 
653 |a Cloud computing 
653 |a Sensors 
653 |a Three dimensional models 
653 |a Initial pressure 
653 |a Arrays 
653 |a In vivo methods and tests 
653 |a Ultrasonic imaging 
653 |a Adaptive algorithms 
653 |a Environmental 
700 1 |a Wang, Yibing  |u Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China (ROR: https://ror.org/02v51f717) (GRID: grid.11135.37) (ISNI: 0000 0001 2256 9319) 
700 1 |a Gao, Jian  |u School of Intelligence Science and Technology, Nanjing University, Suzhou, China (ROR: https://ror.org/01rxvg760) (GRID: grid.41156.37) (ISNI: 0000 0001 2314 964X) 
700 1 |a Kim, Chulhong  |u Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea (ROR: https://ror.org/04xysgw12) (GRID: grid.49100.3c) (ISNI: 0000 0001 0742 4007); Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea (ROR: https://ror.org/04xysgw12) (GRID: grid.49100.3c) (ISNI: 0000 0001 0742 4007); Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea (ROR: https://ror.org/04xysgw12) (GRID: grid.49100.3c) (ISNI: 0000 0001 0742 4007); Department of Medical Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea (ROR: https://ror.org/04xysgw12) (GRID: grid.49100.3c) (ISNI: 0000 0001 0742 4007); Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea (ROR: https://ror.org/04xysgw12) (GRID: grid.49100.3c) (ISNI: 0000 0001 0742 4007) 
700 1 |a Choi, Seongwook  |u Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea (ROR: https://ror.org/04xysgw12) (GRID: grid.49100.3c) (ISNI: 0000 0001 0742 4007); Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea (ROR: https://ror.org/04xysgw12) (GRID: grid.49100.3c) (ISNI: 0000 0001 0742 4007); Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea (ROR: https://ror.org/04xysgw12) (GRID: grid.49100.3c) (ISNI: 0000 0001 0742 4007); Department of Medical Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea (ROR: https://ror.org/04xysgw12) (GRID: grid.49100.3c) (ISNI: 0000 0001 0742 4007); Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea (ROR: https://ror.org/04xysgw12) (GRID: grid.49100.3c) (ISNI: 0000 0001 0742 4007) 
700 1 |a Zhang, Yu  |u Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China (ROR: https://ror.org/02v51f717) (GRID: grid.11135.37) (ISNI: 0000 0001 2256 9319) 
700 1 |a Chen, Qian  |u Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China (ROR: https://ror.org/02v51f717) (GRID: grid.11135.37) (ISNI: 0000 0001 2256 9319) 
700 1 |a Yao, Yao  |u School of Intelligence Science and Technology, Nanjing University, Suzhou, China (ROR: https://ror.org/01rxvg760) (GRID: grid.41156.37) (ISNI: 0000 0001 2314 964X) 
700 1 |a Li, Changhui  |u Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China (ROR: https://ror.org/02v51f717) (GRID: grid.11135.37) (ISNI: 0000 0001 2256 9319); National Biomedical Imaging Center, Peking University, Beijing, China (ROR: https://ror.org/02v51f717) (GRID: grid.11135.37) (ISNI: 0000 0001 2256 9319) 
773 0 |t Nature Communications  |g vol. 17, no. 1 (2026), p. 128-141 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3290767627/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3290767627/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3290767627/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch