Pore Pressure Evolution and F-T Fatigue of Concrete: A Coupled THM-F Phase-Field Modeling Approach

Gardado en:
Detalles Bibliográficos
Publicado en:Computer Modeling in Engineering & Sciences vol. 145, no. 3 (2025), p. 3243-3279
Autor Principal: Zhang, Siwei
Outros autores: Xia, Xiaozhou, Gu, Xin, Zong, Meilin, Zhang, Qing
Publicado:
Tech Science Press
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3291470877
003 UK-CbPIL
022 |a 1526-1492 
022 |a 1526-1506 
024 7 |a 10.32604/cmes.2025.073841  |2 doi 
035 |a 3291470877 
045 2 |b d20250101  |b d20251231 
100 1 |a Zhang, Siwei  |u College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China 
245 1 |a Pore Pressure Evolution and F-T Fatigue of Concrete: A Coupled THM-F Phase-Field Modeling Approach 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a This study presents a coupled thermo-hydro-mechanical-fatigue (THM-F) model, developed based on variational phase-field fatigue theory, to simulate the freeze-thaw (F-T) damage process in concrete. The fracture phase-field model incorporates the F-T fatigue mechanism driven by energy dissipation during the free energy growth stage. Using microscopic inclusion theory, we derive an evolution model of pore size distribution (PSD) for concrete under F-T cycles by treating pore water as columnar inclusions. Drawing upon pore ice crystal theory, calculation models that account for concrete PSD characteristics are established to determine ice saturation, permeability coefficient, and pore pressure. To enhance computational accuracy, a segmented Gaussian integration strategy based on aperture levels is employed. The pore pressure estimation model is applied to assess the frost resistance of concrete with varying air-entraining agent contents, confirming that optimal air-entrainment significantly improves pore structure and lowers the overall freezing point of pore ice. The derived permeability coefficient and pore pressure estimation models are integrated into the THM-F coupled framework, which employs a staggered iterative solution scheme for efficient simulation. Mesoscale numerical examples of concrete demonstrate that the proposed THM-F model effectively captures structural degradation and accurately tracks the procession of F-T-induced fatigue cracks. Validations against experimental measurements, including temperature variations, stress-strain curves, and strain history, shows excellent agreement, underscoring the model’s accuracy and applicability. This study provides a robust theoretical and computational framework for quantitative analysis of coupled F-T-fatigue damage in concrete. 
653 |a Accuracy 
653 |a Inclusions 
653 |a Pore water pressure 
653 |a Air-entraining admixtures 
653 |a Frost resistance 
653 |a Permeability 
653 |a Energy dissipation 
653 |a Melting points 
653 |a Ice crystals 
653 |a Freezing 
653 |a Fatigue failure 
653 |a Pore size distribution 
653 |a Damage 
653 |a Free energy 
653 |a Tempering 
653 |a Concrete 
653 |a Fatigue cracks 
653 |a Iterative solution 
653 |a Stress-strain curves 
653 |a Air entrainment 
653 |a Freeze-thaw 
700 1 |a Xia, Xiaozhou  |u College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China 
700 1 |a Gu, Xin  |u College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China 
700 1 |a Zong, Meilin  |u College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China 
700 1 |a Zhang, Qing  |u College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China 
773 0 |t Computer Modeling in Engineering & Sciences  |g vol. 145, no. 3 (2025), p. 3243-3279 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3291470877/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3291470877/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch