Relative Performance of Rescaling and Resampling Approaches to Model Chi Square and Parameter Standard Error Estimation in Structural Equation Modeling

Spremljeno u:
Bibliografski detalji
Izdano u:ERIC, Resources in Education (RIE) (Apr 1998), p. 1-39
Glavni autor: Nevitt, Johnathan
Daljnji autori: Hancock, Gregory R.
Izdano:
Teme:
Online pristup:Citation/Abstract
Full text outside of ProQuest
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 62542435
003 UK-CbPIL
035 |a 62542435 
045 2 |b d19980401  |b d19980430 
084 |a ED420711 
100 1 |a Nevitt, Johnathan 
245 1 |a Relative Performance of Rescaling and Resampling Approaches to Model Chi Square and Parameter Standard Error Estimation in Structural Equation Modeling 
260 |c Apr 1998 
513 |a Report Speech/Lecture 
520 3 |a Though common structural equation modeling (SEM) methods are predicated upon the assumption of multivariate normality, applied researchers often find themselves with data clearly violating this assumption and without sufficient sample size to use distribution-free estimation methods. Fortunately, promising alternatives are being integrated into popular software packages. For estimating model chi square values and parameter standard errors, EQS (P. Bentler, 1996) combats the effects of nonnormality by rescaling these statistics. AMOS (J. Arbuckle, 1997), on the other hand, offers bootstrap resampling approaches to accurate model chi square and standard error estimation. The current study is a Monte Carlo investigation of these two methods under varied conditions of nonnormality, sample size, and model misspecification. Accuracy of the chi square statistic is evaluated in terms of model rejection rates, while accuracy of standard error estimates takes the form of bias and variability of the estimates themselves. An appendix provides data for the paper's figures. (Contains 2 tables, 5 figures, and 31 references.) (SLD) 
653 |a Chi Square 
653 |a Computer Software 
653 |a Error of Measurement 
653 |a Estimation (Mathematics) 
653 |a Monte Carlo Methods 
653 |a Research Methodology 
653 |a Sample Size 
653 |a Sampling 
653 |a Scaling 
653 |a Structural Equation Models 
700 1 |a Hancock, Gregory R. 
773 0 |t ERIC, Resources in Education (RIE)  |g (Apr 1998), p. 1-39 
786 0 |d ProQuest  |t ERIC 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/62542435/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://eric.ed.gov/?id=ED420711