Comparative Evaluation of Neural Network Learning Algorithms for Ore Grade Estimation

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Mathematical Geology vol. 38, no. 2 (Feb 2006), p. 175
Egile nagusia: Samanta, B
Beste egile batzuk: Bandopadhyay, S, Ganguli, R
Argitaratua:
Springer Nature B.V.
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 728547857
003 UK-CbPIL
022 |a 0882-8121 
022 |a 1874-8961 
022 |a 1874-8953 
022 |a 0029-5958 
024 7 |a 10.1007/s11004-005-9010-z  |2 doi 
035 |a 728547857 
045 2 |b d20060201  |b d20060228 
084 |a 109026  |2 nlm 
100 1 |a Samanta, B 
245 1 |a Comparative Evaluation of Neural Network Learning Algorithms for Ore Grade Estimation 
260 |b Springer Nature B.V.  |c Feb 2006 
513 |a Feature 
520 3 |a In this paper, comparative evaluation of various local and global learning algorithms in neural network modeling was performed for ore grade estimation in three deposits: gold, bauxite, and iron ore. Four local learning algorithms, standard back-propagation, back-propagation with momentum, quickprop back-propagation, and Levenberg-Marquardt back-propagation, along with two global learning algorithms, NOVEL and simulated annealing, were investigated for this purpose. The study results revealed that no benefit was achieved using global learning algorithms over local learning algorithms. The reasons for showing equivalent performance of global and local learning algorithms was the smooth error surface of neural network training for these specific case studies. However, a separate exercise involving local and global learning algorithms on a nonlinear multimodal optimization of a Rastrigin function, containing many local minima, clearly demonstrated the superior performance of global learning algorithms over local learning algorithms. Although no benefit was found by using global learning algorithms of neural network training for these specific case studies, as a safeguard against getting trapped in local minima, it is better to apply global learning algorithms in neural network training since many real-life applications of neural network modeling show local minima problems in error surface.[PUBLICATION ABSTRACT] 
653 |a Neural networks 
653 |a Algorithms 
653 |a Case studies 
653 |a Iron ores 
653 |a Economic 
700 1 |a Bandopadhyay, S 
700 1 |a Ganguli, R 
773 0 |t Mathematical Geology  |g vol. 38, no. 2 (Feb 2006), p. 175 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/728547857/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/728547857/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/728547857/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch