An exploratory data analysis method to reveal modular latent structures in high-throughput data

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC Bioinformatics vol. 11 (2010), p. 440
Hlavní autor: Yu, Tianwei
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 901859440
003 UK-CbPIL
022 |a 1471-2105 
024 7 |a 10.1186/1471-2105-11-440  |2 doi 
035 |a 901859440 
045 2 |b d20100101  |b d20101231 
084 |a 20799972 
084 |a 58459  |2 nlm 
100 1 |a Yu, Tianwei 
245 1 |a An exploratory data analysis method to reveal modular latent structures in high-throughput data 
260 |b Springer Nature B.V.  |c 2010 
513 |a Journal Article 
520 3 |a Abstract Background: Modular structures are ubiquitous across various types of biological networks. The study of network modularity can help reveal regulatory mechanisms in systems biology, evolutionary biology and developmental biology. Identifying putative modular latent structures from high-throughput data using exploratory analysis can help better interpret the data and generate new hypotheses. Unsupervised learning methods designed for global dimension reduction or clustering fall short of identifying modules with factors acting in linear combinations. Results: We present an exploratory data analysis method named MLSA (Modular Latent Structure Analysis) to estimate modular latent structures, which can find co-regulative modules that involve non-coexpressive genes. Conclusions: Through simulations and real-data analyses, we show that the method can recover modular latent structures effectively. In addition, the method also performed very well on data generated from sparse global latent factor models. The R code is available at http://userwww.service.emory.edu/~tyu8/MLSA/ .   Modular structures are ubiquitous across various types of biological networks. The study of network modularity can help reveal regulatory mechanisms in systems biology, evolutionary biology and developmental biology. Identifying putative modular latent structures from high-throughput data using exploratory analysis can help better interpret the data and generate new hypotheses. Unsupervised learning methods designed for global dimension reduction or clustering fall short of identifying modules with factors acting in linear combinations. We present an exploratory data analysis method named MLSA (Modular Latent Structure Analysis) to estimate modular latent structures, which can find co-regulative modules that involve non-coexpressive genes. Through simulations and real-data analyses, we show that the method can recover modular latent structures effectively. In addition, the method also performed very well on data generated from sparse global latent factor models. The R code is available at http://userwww.service.emory.edu/~tyu8/MLSA/. 
650 2 2 |a Algorithms 
650 2 2 |a Carcinoma, Squamous Cell  |x genetics 
650 2 2 |a Cell Cycle 
650 2 2 |a Cell Line, Tumor 
650 2 2 |a Computer Simulation 
650 1 2 |a Gene Regulatory Networks 
650 2 2 |a Humans 
650 1 2 |a Information Systems 
650 2 2 |a Lung Neoplasms  |x genetics 
650 1 2 |a Models, Biological 
650 2 2 |a Models, Statistical 
650 2 2 |a Systems Biology 
650 1 2 |a Systems Theory 
650 2 2 |a Yeasts  |x physiology 
653 |a Studies 
653 |a Sparsity 
653 |a Proteins 
653 |a Methods 
653 |a Environmental 
773 0 |t BMC Bioinformatics  |g vol. 11 (2010), p. 440 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/901859440/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/901859440/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/901859440/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch