On the Factorization of Block-Tridiagonals without Storage Constraints

Uloženo v:
Podrobná bibliografie
Vydáno v:Society for Industrial and Applied Mathematics. SIAM Journal on Scientific and Statistical Computing vol. 6, no. 1 (Jan 1985), p. 182
Hlavní autor: Merriam, Marshal L.
Vydáno:
Society for Industrial and Applied Mathematics
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 920998392
003 UK-CbPIL
022 |a 0196-5204 
022 |a 1064-8275 
022 |a 1095-7197 
024 7 |a 10.1137/0906015  |2 doi 
035 |a 920998392 
045 2 |b d19850101  |b d19850131 
084 |a 152142  |2 nlm 
100 1 |a Merriam, Marshal L. 
245 1 |a On the Factorization of Block-Tridiagonals without Storage Constraints 
260 |b Society for Industrial and Applied Mathematics  |c Jan 1985 
513 |a PERIODICAL 
520 3 |a In many programs solving difference equations, problem size is restricted by the number of available memory cells. A strategy has been developed to permit trade-offs between the number of floating point operations required and storage requirements for the solution of certain problems such as block tridiagonal systems of equations. This is done by recomputing some intermediate results instead of storing them. Reducing the storage to the square root of the current requirement will roughly double the number of computations. In theory, if $m$ is the order of each sub-matrix in the block tridiagonal matrix, one can solve any linear system with only $5m^2 + 1$ temporary storage cells. This method lends itself to efficient use on computers with parallel processing or vector processing architectures. On these computers the larger number of floating point operations is more than offset by the decrease in I/O and the increased percentage of vector operations made possible by this algorithm. 
653 |a Decomposition 
653 |a Algorithms 
773 0 |t Society for Industrial and Applied Mathematics. SIAM Journal on Scientific and Statistical Computing  |g vol. 6, no. 1 (Jan 1985), p. 182 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/920998392/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/920998392/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch