The structure of affine buildings

Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions and residues of these buildings.

Bewaard in:
Bibliografische gegevens
Hoofdauteur: Weiss, Richard M. (Richard Mark), 1946-
Formaat: Elektronisch E-boek
Taal:Engels
Gepubliceerd in: Princeton : Princeton University Press, 2009.
Onderwerpen:
Online toegang:Available in Academic Search Ultimate.
Ver en el OPAC
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000cam a22000002a 4500
001 ebs65898280e
003 EBZ
006 m d ||||||
007 cr|unu||||||||
008 080410s2009 njua ob 001 0 eng
020 0 |z 9780691136592 
020 0 |z 9780691138817 
020 0 |a 9781282458369 (online) 
020 0 |a 9781400829057 (online) 
035 |a (EBZ)ebs65898280e 
040 |a DLC   |b eng   |d EBZ 
042 |a msc 
050 0 0 |a QA174.2  |b .W454 2009 
100 1 |a Weiss, Richard M.  |q (Richard Mark),  |d 1946- 
240 1 0 |a Structure of affine buildings (Online) 
245 1 4 |a The structure of affine buildings  |h [electronic resource] /  |c Richard M. Weiss. 
260 |a Princeton :  |b Princeton University Press,  |c 2009. 
504 |a Includes bibliographical references (p. [361]-363) and index. 
505 0 |a Preface vii Chapter 1. Affine Coxeter Diagrams 1 Chapter 2. Root Systems 13 Chapter 3. Root Data with Valuation 25 Chapter 4. Sectors 39 Chapter 5. Faces 45 Chapter 6. Gems 53 Chapter 7. Affine Buildings 59 Chapter 8. The Building at Infinity 67 Chapter 9. Trees with Valuation 77 Chapter 10. Wall Trees 89 Chapter 11. Panel Trees 101 Chapter 12. Tree-Preserving Isomorphisms 107 Chapter 13. The Moufang Property at Infinity 119 Chapter 14. Existence 131 Chapter 15. Partial Valuations 147 Chapter 16. Bruhat-Tits Theory 159 Chapter 17. Completions 167 Chapter 18. Automorphisms and Residues 175 Chapter 19. Quadrangles of Quadratic Form Type 189 Chapter 20. Quadrangles of Indifferent Type 205 Chapter 21. Quadrangles of Type E6, E7 and E8 209 Chapter 22. Quadrangles of Type F4 221 Chapter 23. Quadrangles of Involutory Type 229 Chapter 24. Pseudo-Quadratic Quadrangles 239 Chapter 25. Hexagons 261 Chapter 26. Assorted Conclusions 275 Chapter 27. Summary of the Classification 289 Chapter 28. Locally Finite Bruhat-Tits Buildings 297 Chapter 29. Appendix A 321 Chapter 30. Appendix B 343 Bibliography 361 Index 365. 
520 |a Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions and residues of these buildings. 
650 0 |a Buildings (Group theory) 
650 0 |a Moufang loops. 
650 0 |a Automorphisms. 
650 0 |a Affine algebraic groups. 
773 0 |t Academic Search Ultimate   |d EBSCO 
776 1 |t The structure of affine buildings /  |w (OCoLC)ocn225091360  |w (DLC)2008062106 
856 4 0 |3 Full text available: Sep 2008.  |z Available in Academic Search Ultimate.  |u https://biblioteca.ues.edu.sv/acceso/ebsco/?url=https%3A%2F%2Fsearch.ebscohost.com%2Fdirect.asp%3Fdb%3Dasn%26jid%3DAYRP%26scope%3Dsite 
901 |a Book