Understanding Evolutionary Potential in Virtual CPU Instruction Set Architectures

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 8, no. 12 (Dec 2013), p. e83242
Autor principal: Bryson, David M
Otros Autores: Ofria, Charles
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 1470558662
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0083242  |2 doi 
035 |a 1470558662 
045 2 |b d20131201  |b d20131231 
084 |a 174835  |2 nlm 
100 1 |a Bryson, David M 
245 1 |a Understanding Evolutionary Potential in Virtual CPU Instruction Set Architectures 
260 |b Public Library of Science  |c Dec 2013 
513 |a Journal Article 
520 3 |a We investigate fundamental decisions in the design of instruction set architectures for linear genetic programs that are used as both model systems in evolutionary biology and underlying solution representations in evolutionary computation. We subjected digital organisms with each tested architecture to seven different computational environments designed to present a range of evolutionary challenges. Our goal was to engineer a general purpose architecture that would be effective under a broad range of evolutionary conditions. We evaluated six different types of architectural features for the virtual CPUs: (1) genetic flexibility: we allowed digital organisms to more precisely modify the function of genetic instructions, (2) memory: we provided an increased number of registers in the virtual CPUs, (3) decoupled sensors and actuators: we separated input and output operations to enable greater control over data flow. We also tested a variety of methods to regulate expression: (4) explicit labels that allow programs to dynamically refer to specific genome positions, (5) position-relative search instructions, and (6) multiple new flow control instructions, including conditionals and jumps. Each of these features also adds complication to the instruction set and risks slowing evolution due to epistatic interactions. Two features (multiple argument specification and separated I/O) demonstrated substantial improvements in the majority of test environments, along with versions of each of the remaining architecture modifications that show significant improvements in multiple environments. However, some tested modifications were detrimental, though most exhibit no systematic effects on evolutionary potential, highlighting the robustness of digital evolution. Combined, these observations enhance our understanding of how instruction architecture impacts evolutionary potential, enabling the creation of architectures that support more rapid evolution of complex solutions to a broad range of challenges. 
610 4 |a Michigan State University 
651 4 |a Michigan 
651 4 |a East Lansing Michigan 
651 4 |a United States--US 
653 |a International conferences 
653 |a Epistasis 
653 |a Computer science 
653 |a Evolution 
653 |a Genomes 
653 |a Mutation 
653 |a Computer applications 
653 |a Organisms 
653 |a Flow control 
653 |a Simulation 
653 |a Computers 
653 |a Architectural engineering 
653 |a Experiments 
653 |a Genetic algorithms 
653 |a Design 
653 |a Evolutionary design method 
653 |a Genetic programs 
653 |a Computer architecture 
653 |a Architecture 
653 |a Evolutionary computation 
700 1 |a Ofria, Charles 
773 0 |t PLoS One  |g vol. 8, no. 12 (Dec 2013), p. e83242 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1470558662/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1470558662/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1470558662/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch