Predicting Virtual World User Population Fluctuations with Deep Learning

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:PLoS One vol. 11, no. 12 (Dec 2016), p. e0167153
المؤلف الرئيسي: Young Bin Kim
مؤلفون آخرون: Park, Nuri, Zhang, Qimeng, Kim, Jun Gi, Shin Jin Kang, Kim, Chang Hun
منشور في:
Public Library of Science
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:This paper proposes a system for predicting increases in virtual world user actions. The virtual world user population is a very important aspect of these worlds; however, methods for predicting fluctuations in these populations have not been well documented. Therefore, we attempt to predict changes in virtual world user populations with deep learning, using easily accessible online data, including formal datasets from Google Trends, Wikipedia, and online communities, as well as informal datasets collected from online forums. We use the proposed system to analyze the user population of EVE Online, one of the largest virtual worlds.
تدمد:1932-6203
DOI:10.1371/journal.pone.0167153
المصدر:Health & Medical Collection