Forecasting electric vehicles sales with univariate and multivariate time series models: The case of China

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:PLoS One vol. 12, no. 5 (May 2017), p. e0176729
Үндсэн зохиолч: Zhang, Yong
Бусад зохиолчид: Miner, Zhong, Geng, Nana, Jiang, Yunjian
Хэвлэсэн:
Public Library of Science
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!
Тодорхойлолт
Хураангуй:The market demand for electric vehicles (EVs) has increased in recent years. Suitable models are necessary to understand and forecast EV sales. This study presents a singular spectrum analysis (SSA) as a univariate time-series model and vector autoregressive model (VAR) as a multivariate model. Empirical results suggest that SSA satisfactorily indicates the evolving trend and provides reasonable results. The VAR model, which comprised exogenous parameters related to the market on a monthly basis, can significantly improve the prediction accuracy. The EV sales in China, which are categorized into battery and plug-in EVs, are predicted in both short term (up to December 2017) and long term (up to 2020), as statistical proofs of the growth of the Chinese EV industry.
ISSN:1932-6203
DOI:10.1371/journal.pone.0176729
Эх сурвалж:Health & Medical Collection