MARC

LEADER 00000nab a2200000uu 4500
001 1894673658
003 UK-CbPIL
022 |a 1752-0509 
024 7 |a 10.1186/s12918-017-0425-1  |2 doi 
035 |a 1894673658 
045 2 |b d20170101  |b d20171231 
084 |a 113110  |2 nlm 
100 1 |a Kuzmanovska, Irena 
245 1 |a Parameter inference for stochastic single-cell dynamics from lineage tree data 
260 |b BioMed Central  |c 2017 
513 |a Journal Article 
520 3 |a Background With the advance of experimental techniques such as time-lapse fluorescence microscopy, the availability of single-cell trajectory data has vastly increased, and so has the demand for computational methods suitable for parameter inference with this type of data. Most of currently available methods treat single-cell trajectories independently, ignoring the mother-daughter relationships and the information provided by the population structure. However, this information is essential if a process of interest happens at cell division, or if it evolves slowly compared to the duration of the cell cycle. Results In this work, we propose a Bayesian framework for parameter inference on single-cell time-lapse data from lineage trees. Our method relies on a combination of Sequential Monte Carlo for approximating the parameter likelihood function and Markov Chain Monte Carlo for parameter exploration. We demonstrate our inference framework on two simple examples in which the lineage tree information is crucial: one in which the cell phenotype can only switch at cell division and another where the cell state fluctuates slowly over timescales that extend well beyond the cell-cycle duration. Conclusion There exist several examples of biological processes, such as stem cell fate decisions or epigenetically controlled phase variation in bacteria, where the cell ancestry is expected to contain important information about the underlying system dynamics. Parameter inference methods that discard this information are expected to perform poorly for such type of processes. Our method provides a simple and computationally efficient way to take into account single-cell lineage tree data for the purpose of parameter inference and serves as a starting point for the development of more sophisticated and powerful approaches in the future. 
653 |a Environmental 
653 |a DNA methylation 
653 |a Monte Carlo simulation 
653 |a Methods 
653 |a Bayesian analysis 
653 |a Stem cells 
653 |a Markov analysis 
653 |a Embryo cells 
653 |a Accessibility 
653 |a Cell culture 
653 |a Bioinformatics 
653 |a Chains 
653 |a Samplers 
653 |a Computer applications 
653 |a Circuits 
653 |a Sampling 
653 |a Genotypes 
653 |a Animal models 
653 |a Time measurement 
653 |a Bacteria 
653 |a Cell lineage 
653 |a Smoothing 
653 |a Correlation 
653 |a Biometrics 
653 |a Inference 
653 |a Computer graphics 
653 |a Gene expression 
653 |a Dynamical systems 
653 |a Microscopy 
653 |a Cell cycle 
653 |a Statistics 
653 |a Simplification 
653 |a Statistical analysis 
653 |a Differentiation 
653 |a Data processing 
653 |a Computer programs 
653 |a Stochastic processes 
653 |a Cell division 
653 |a Replication 
653 |a Trajectories 
653 |a Dynamics 
653 |a Abundance 
653 |a Biochemistry 
653 |a Probability theory 
653 |a Filtration 
653 |a Mathematical models 
653 |a Approximation 
653 |a E coli 
653 |a Markov chains 
653 |a Fluorescence microscopy 
653 |a Population structure 
700 1 |a Milias-Argeitis, Andreas 
700 1 |a Mikelson, Jan 
700 1 |a Zechner, Christoph 
700 1 |a Khammash, Mustafa 
773 0 |t BMC Systems Biology  |g vol. 11 (2017), p. n/a 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1894673658/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1894673658/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch