Optimality Conditions and Geometric Properties of a Linear Multilevel Programming Problem with Dominated Objective Functions

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Journal of Optimization Theory and Applications vol. 123, no. 2 (Nov 2004), p. 409
Egile nagusia: Ruan, G Z
Beste egile batzuk: Wang, S Y, Yamamoto, Y, Zhu, S S
Argitaratua:
Springer Nature B.V.
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Deskribapena
Laburpena:In this paper, a model of a linear multilevel programming problem with dominated objective functions (LMPPD(l)) is proposed, where multiple reactions of the lower levels do not lead to any uncertainty in the upper-level decision making. Under the assumption that the constrained set is nonempty and bounded, a necessary optimality condition is obtained. Two types of geometric properties of the solution sets are studied. It is demonstrated that the feasible set of LMPPD(l) is neither necessarily composed of faces of the constrained set nor necessarily connected. These properties are different from the existing theoretical results for linear multilevel programming problems.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-004-5156-y
Baliabidea:ABI/INFORM Global