Mean field repulsive Kuramoto models: Phase locking and spatial signs

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Mar 7, 2018), p. n/a
Autor principal: Ciobotaru, Corina
Altres autors: Linard Hoessly, Mazza, Christian, Xavier, Richard
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2071720338
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2071720338 
045 0 |b d20180307 
100 1 |a Ciobotaru, Corina 
245 1 |a Mean field repulsive Kuramoto models: Phase locking and spatial signs 
260 |b Cornell University Library, arXiv.org  |c Mar 7, 2018 
513 |a Working Paper 
520 3 |a The phenomenon of self-synchronization in populations of oscillatory units appears naturally in neurosciences. However, in some situations, the formation of a coherent state is damaging. In this article we study a repulsive mean-field Kuramoto model that describes the time evolution of n points on the unit circle, which are transformed into incoherent phase-locked states. It has been recently shown that such systems can be reduced to a three-dimensional system of ordinary differential equations, whose mathematical structure is strongly related to hyperbolic geometry. The orbits of the Kuramoto dynamical system are then described by a ow of M\"obius transformations. We show this underlying dynamic performs statistical inference by computing dynamically M-estimates of scatter matrices. We also describe the limiting phase-locked states for random initial conditions using Tyler's transformation matrix. Moreover, we show the repulsive Kuramoto model performs dynamically not only robust covariance matrix estimation, but also data processing: the initial configuration of the n points is transformed by the dynamic into a limiting phase-locked state that surprisingly equals the spatial signs from nonparametric statistics. That makes the sign empirical covariance matrix to equal 1 2 id2, the variance-covariance matrix of a random vector that is uniformly distributed on the unit circle. 
653 |a Ordinary differential equations 
653 |a Transformations (mathematics) 
653 |a Covariance matrix 
653 |a Nonparametric statistics 
653 |a Data processing 
653 |a Mathematical analysis 
653 |a Constraining 
653 |a Differential geometry 
653 |a Initial conditions 
653 |a Locking 
653 |a Matrix methods 
653 |a Synchronism 
653 |a Matrix algebra 
653 |a Differential equations 
653 |a Robustness (mathematics) 
653 |a Statistical inference 
653 |a Phase transitions 
700 1 |a Linard Hoessly 
700 1 |a Mazza, Christian 
700 1 |a Xavier, Richard 
773 0 |t arXiv.org  |g (Mar 7, 2018), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2071720338/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1803.02647