Multi-Sensor Data Pattern Recognition for Multi-Target Localization: A Machine Learning Approach
I tiakina i:
| I whakaputaina i: | arXiv.org (Feb 28, 2017), p. n/a |
|---|---|
| Kaituhi matua: | |
| Ētahi atu kaituhi: | , , |
| I whakaputaina: |
Cornell University Library, arXiv.org
|
| Ngā marau: | |
| Urunga tuihono: | Citation/Abstract Full text outside of ProQuest |
| Ngā Tūtohu: |
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
|
| Whakarāpopotonga: | Data-target pairing is an important step towards multi-target localization for the intelligent operation of unmanned systems. Target localization plays a crucial role in numerous applications, such as search, and rescue missions, traffic management and surveillance. The objective of this paper is to present an innovative target location learning approach, where numerous machine learning approaches, including K-means clustering and supported vector machines (SVM), are used to learn the data pattern across a list of spatially distributed sensors. To enable the accurate data association from different sensors for accurate target localization, appropriate data pre-processing is essential, which is then followed by the application of different machine learning algorithms to appropriately group data from different sensors for the accurate localization of multiple targets. Through simulation examples, the performance of these machine learning algorithms is quantified and compared. |
|---|---|
| ISSN: | 2331-8422 |
| Puna: | Engineering Database |