SPARK: Static Program Analysis Reasoning and Retrieving Knowledge

Sparad:
Bibliografiska uppgifter
I publikationen:arXiv.org (Nov 3, 2017), p. n/a
Huvudupphov: Sodsong, Wasuwee
Övriga upphov: Scholz, Bernhard, Chawla, Sanjay
Utgiven:
Cornell University Library, arXiv.org
Ämnen:
Länkar:Citation/Abstract
Full text outside of ProQuest
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 2076929544
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2076929544 
045 0 |b d20171103 
100 1 |a Sodsong, Wasuwee 
245 1 |a SPARK: Static Program Analysis Reasoning and Retrieving Knowledge 
260 |b Cornell University Library, arXiv.org  |c Nov 3, 2017 
513 |a Working Paper 
520 3 |a Program analysis is a technique to reason about programs without executing them, and it has various applications in compilers, integrated development environments, and security. In this work, we present a machine learning pipeline that induces a security analyzer for programs by example. The security analyzer determines whether a program is either secure or insecure based on symbolic rules that were deduced by our machine learning pipeline. The machine pipeline is two-staged consisting of a Recurrent Neural Networks (RNN) and an Extractor that converts an RNN to symbolic rules. To evaluate the quality of the learned symbolic rules, we propose a sampling-based similarity measurement between two infinite regular languages. We conduct a case study using real-world data. In this work, we discuss the limitations of existing techniques and possible improvements in the future. The results show that with sufficient training data and a fair distribution of program paths it is feasible to deducing symbolic security rules for the OpenJDK library with millions lines of code. 
653 |a Artificial intelligence 
653 |a Pipelines 
653 |a Case studies 
653 |a Recurrent neural networks 
653 |a Program verification (computers) 
653 |a Compilers 
653 |a Security 
653 |a Machine learning 
700 1 |a Scholz, Bernhard 
700 1 |a Chawla, Sanjay 
773 0 |t arXiv.org  |g (Nov 3, 2017), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2076929544/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1711.01024