SPARK: Static Program Analysis Reasoning and Retrieving Knowledge

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Nov 3, 2017), p. n/a
Autor principal: Sodsong, Wasuwee
Altres autors: Scholz, Bernhard, Chawla, Sanjay
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Resum:Program analysis is a technique to reason about programs without executing them, and it has various applications in compilers, integrated development environments, and security. In this work, we present a machine learning pipeline that induces a security analyzer for programs by example. The security analyzer determines whether a program is either secure or insecure based on symbolic rules that were deduced by our machine learning pipeline. The machine pipeline is two-staged consisting of a Recurrent Neural Networks (RNN) and an Extractor that converts an RNN to symbolic rules. To evaluate the quality of the learned symbolic rules, we propose a sampling-based similarity measurement between two infinite regular languages. We conduct a case study using real-world data. In this work, we discuss the limitations of existing techniques and possible improvements in the future. The results show that with sufficient training data and a fair distribution of program paths it is feasible to deducing symbolic security rules for the OpenJDK library with millions lines of code.
ISSN:2331-8422
Font:Engineering Database