Excitation of collective modes in a quantum flute

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Jun 12, 2012), p. n/a
Autor principal: Torfason, Kristinn
Altres autors: Manolescu, Andrei, Molodoveanu, Valeriu, Gudmundsson, Vidar
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Resum:We use a generalized master equation (GME) formalism to describe the non-equilibrium time-dependent transport of Coulomb interacting electrons through a short quantum wire connected to semi-infinite biased leads. The contact strength between the leads and the wire is modulated by out-of-phase time-dependent potentials which simulate a turnstile device. We explore this setup by keeping the contact with one lead at a fixed location at one end of the wire whereas the contact with the other lead is placed on various sites along the length of the wire. We study the propagation of sinusoidal and rectangular pulses. We find that the current profiles in both leads depend not only on the shape of the pulses, but also on the position of the second contact. The current reflects standing waves created by the contact potentials, like in a wind musical instrument (for example a flute), but occurring on the background of the equilibrium charge distribution. The number of electrons in our quantum "flute" device varies between two and three. We find that for rectangular pulses the currents in the leads may flow against the bias for short time intervals, due to the higher harmonics of the charge response. The GME is solved numerically in small time steps without resorting to the traditional Markov and rotating wave approximations. The Coulomb interaction between the electrons in the sample is included via the exact diagonalization method. The system (leads plus sample wire) is described by a lattice model.
ISSN:2331-8422
DOI:10.1103/PhysRevB.85.245114
Font:Engineering Database