Moving finite unit tight frames for \(S^n\)

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Sep 25, 2012), p. n/a
Autor principal: Freeman, Daniel
Otros Autores: Ryan Hotovy, Martin, Eileen
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Frames for \(\R^n\) can be thought of as redundant or linearly dependent coordinate systems, and have important applications in such areas as signal processing, data compression, and sampling theory. The word "frame" has a different meaning in the context of differential geometry and topology. A moving frame for the tangent bundle of a smooth manifold is a basis for the tangent space at each point which varies smoothly over the manifold. It is well known that the only spheres with a moving basis for their tangent bundle are \(S^1\), \(S^3\), and \(S^7\). On the other hand, after combining the two separate meanings of the word "frame", we show that the \(n\)-dimensional sphere, \(S^n\), has a moving finite unit tight frame for its tangent bundle if and only if \(n\) is odd. We give a procedure for creating vector fields on \(S^{2n-1}\) for all \(n\in\N\), and we characterize exactly when sets of such vector fields form a moving finite unit tight frame.
ISSN:2331-8422
Fuente:Engineering Database