Moving finite unit tight frames for \(S^n\)

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Sep 25, 2012), p. n/a
Autor principal: Freeman, Daniel
Altres autors: Ryan Hotovy, Martin, Eileen
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2086685894
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2086685894 
045 0 |b d20120925 
100 1 |a Freeman, Daniel 
245 1 |a Moving finite unit tight frames for \(S^n\) 
260 |b Cornell University Library, arXiv.org  |c Sep 25, 2012 
513 |a Working Paper 
520 3 |a Frames for \(\R^n\) can be thought of as redundant or linearly dependent coordinate systems, and have important applications in such areas as signal processing, data compression, and sampling theory. The word "frame" has a different meaning in the context of differential geometry and topology. A moving frame for the tangent bundle of a smooth manifold is a basis for the tangent space at each point which varies smoothly over the manifold. It is well known that the only spheres with a moving basis for their tangent bundle are \(S^1\), \(S^3\), and \(S^7\). On the other hand, after combining the two separate meanings of the word "frame", we show that the \(n\)-dimensional sphere, \(S^n\), has a moving finite unit tight frame for its tangent bundle if and only if \(n\) is odd. We give a procedure for creating vector fields on \(S^{2n-1}\) for all \(n\in\N\), and we characterize exactly when sets of such vector fields form a moving finite unit tight frame. 
653 |a Data compression 
653 |a Bundling 
653 |a Manifolds (mathematics) 
653 |a Fields (mathematics) 
653 |a Signal processing 
653 |a Differential geometry 
653 |a Coordinates 
653 |a Topology 
700 1 |a Ryan Hotovy 
700 1 |a Martin, Eileen 
773 0 |t arXiv.org  |g (Sep 25, 2012), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2086685894/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1209.5495