Multi-Dimensional Scaling on Groups

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Jan 14, 2020), p. n/a
Autor principal: Blumstein, Mark
Otros Autores: Kvinge, Henry
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Leveraging the intrinsic symmetries in data for clear and efficient analysis is an important theme in signal processing and other data-driven sciences. A basic example of this is the ubiquity of the discrete Fourier transform which arises from translational symmetry (i.e. time-delay/phase-shift). Particularly important in this area is understanding how symmetries inform the algorithms that we apply to our data. In this paper we explore the behavior of the dimensionality reduction algorithm multi-dimensional scaling (MDS) in the presence of symmetry. We show that understanding the properties of the underlying symmetry group allows us to make strong statements about the output of MDS even before applying the algorithm itself. In analogy to Fourier theory, we show that in some cases only a handful of fundamental "frequencies" (irreducible representations derived from the corresponding group) contribute information for the MDS Euclidean embedding.
ISSN:2331-8422
Fuente:Engineering Database