Multi-Dimensional Scaling on Groups

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Jan 14, 2020), p. n/a
Autor principal: Blumstein, Mark
Otros Autores: Kvinge, Henry
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2154454489
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2154454489 
045 0 |b d20200114 
100 1 |a Blumstein, Mark 
245 1 |a Multi-Dimensional Scaling on Groups 
260 |b Cornell University Library, arXiv.org  |c Jan 14, 2020 
513 |a Working Paper 
520 3 |a Leveraging the intrinsic symmetries in data for clear and efficient analysis is an important theme in signal processing and other data-driven sciences. A basic example of this is the ubiquity of the discrete Fourier transform which arises from translational symmetry (i.e. time-delay/phase-shift). Particularly important in this area is understanding how symmetries inform the algorithms that we apply to our data. In this paper we explore the behavior of the dimensionality reduction algorithm multi-dimensional scaling (MDS) in the presence of symmetry. We show that understanding the properties of the underlying symmetry group allows us to make strong statements about the output of MDS even before applying the algorithm itself. In analogy to Fourier theory, we show that in some cases only a handful of fundamental "frequencies" (irreducible representations derived from the corresponding group) contribute information for the MDS Euclidean embedding. 
653 |a Scientific visualization 
653 |a Mathematical analysis 
653 |a Fourier transforms 
653 |a Analytics 
653 |a Scaling 
653 |a Standard data 
653 |a Group theory 
653 |a Euclidean space 
653 |a Permutations 
653 |a Machine learning 
653 |a Symmetry 
653 |a Visualization 
653 |a Euclidean geometry 
700 1 |a Kvinge, Henry 
773 0 |t arXiv.org  |g (Jan 14, 2020), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2154454489/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1812.03362