Quadratically convergent algorithm for computing real root of non-linear transcendental equations

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC Research Notes vol. 11 (2018), p. 1
Hlavní autor: Thota, Srinivasarao
Další autoři: Srivastav, Vivek Kumar
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Abstrakt:Objectives The present paper describes a new algorithm to find a root of non-linear transcendental equations. It is found that Regula-Falsi method always gives guaranteed result but slow convergence. However, Newton–Raphson method does not give guaranteed result but faster than Regula-Falsi method. Therefore, the present paper used these two ideas and developed a new algorithm which has better convergence than Regula-Falsi and guaranteed result. One of the major issue in Newton–Raphson method is, it fails when first derivative is zero or approximately zero. Results The proposed method implemented the failure condition of Newton–Raphson method with better convergence. Error calculation has been discussed for certain real life examples using Bisection, Regula-Falsi, Newton–Raphson method and new proposed method. The computed results show that the new proposed quadratically convergent method provides better convergence than other methods.
ISSN:1756-0500
DOI:10.1186/s13104-018-4008-z
Zdroj:Health & Medical Collection