Minimizing makespan in a two-machine no-wait flow shop with batch processing machines

Salvato in:
Dettagli Bibliografici
Pubblicato in:The International Journal of Advanced Manufacturing Technology vol. 63, no. 1-4 (Nov 2012), p. 281
Autore principale: Muthuswamy, Shanthi
Altri autori: Vélez-Gallego, Mario C, Maya, Jairo, Rojas-Santiago, Miguel
Pubblicazione:
Springer Nature B.V.
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 2262403476
003 UK-CbPIL
022 |a 0268-3768 
022 |a 1433-3015 
024 7 |a 10.1007/s00170-012-3906-9  |2 doi 
035 |a 2262403476 
045 2 |b d20121101  |b d20121130 
100 1 |a Muthuswamy, Shanthi  |u Department of Technology, Northern Illinois University, Dekalb, IL, USA 
245 1 |a Minimizing makespan in a two-machine no-wait flow shop with batch processing machines 
260 |b Springer Nature B.V.  |c Nov 2012 
513 |a Journal Article 
520 3 |a Given a set of jobs and two batch processing machines (BPMs) arranged in a flow shop environment, the objective is to batch the jobs and sequence the batches such that the makespan is minimized. The job sizes, ready times, and processing times on the two BPMs are known. The batch processing machines can process a batch of jobs as long as the total size of all the jobs assigned to a batch does not exceed its capacity. Once the jobs are batched, the processing time of the batch on the first machine is equal to the longest processing job in the batch; processing time of the batch on the second machine is equal to the sum of processing times of all the jobs in the batch. The batches cannot wait between two machines (i.e., no-wait). The problem under study is NP-hard. We propose a mathematical formulation and present a particle swarm optimization (PSO) algorithm. The solution quality and run time of PSO is compared with a commercial solver used to solve the mathematical formulation. Experimental study clearly highlights the advantages, in terms of solution quality and run time, of using PSO to solve large-scale problems. 
653 |a Algorithms 
653 |a Mathematical analysis 
653 |a Batch processing 
653 |a Run time (computers) 
653 |a Particle swarm optimization 
653 |a Production scheduling 
653 |a Sequential scheduling 
700 1 |a Vélez-Gallego, Mario C  |u Departamento de Ingeniería de Producción, Universidad EAFIT, Medellín, Colombia 
700 1 |a Maya, Jairo  |u Departamento de Ingeniería de Producción, Universidad EAFIT, Medellín, Colombia 
700 1 |a Rojas-Santiago, Miguel  |u Departamento de Ingeniería Industrial, Universidad del Norte, Barranquilla, Colombia 
773 0 |t The International Journal of Advanced Manufacturing Technology  |g vol. 63, no. 1-4 (Nov 2012), p. 281 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2262403476/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2262403476/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch