MAPO: A Multi-Objective Model for IoT Application Placement in a Fog Environment

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Aug 3, 2019), p. n/a
Autor principal: Mehran, Narges
Otros Autores: Kimovski, Dragi, Prodan, Radu
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The emergence of the Fog computing paradigm that leverages in-network virtualized resources raises important challenges in terms of resource and IoT application management in a heterogeneous environment offering only limited computing resources. In this work, we propose a novel Pareto-based approach for application placement close to the data sources called Multiobjective IoT application Placement in fOg (MAPO). MAPO models applications based on a finite state machine and uses three conflicting optimization objectives, namely completion time, energy consumption, and economic cost, considering both the computation and communication aspects. In contrast to existing solutions that optimize a single objective value, MAPO enables multi-objective energy and cost-aware application placement. To evaluate the quality of the MAPO placements, we created both simulated and real-world testbeds tailored for a set of medical IoT application case studies. Compared to the state-of-the-art approaches, MAPO reduces the economic cost by up to 27%, while decreasing the energy requirements by 23-68%, and optimizes the completion time by up to 7.3 times.
ISSN:2331-8422
Fuente:Engineering Database