MAPO: A Multi-Objective Model for IoT Application Placement in a Fog Environment

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Aug 3, 2019), p. n/a
Autor principal: Mehran, Narges
Altres autors: Kimovski, Dragi, Prodan, Radu
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2268889985
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2268889985 
045 0 |b d20190803 
100 1 |a Mehran, Narges 
245 1 |a MAPO: A Multi-Objective Model for IoT Application Placement in a Fog Environment 
260 |b Cornell University Library, arXiv.org  |c Aug 3, 2019 
513 |a Working Paper 
520 3 |a The emergence of the Fog computing paradigm that leverages in-network virtualized resources raises important challenges in terms of resource and IoT application management in a heterogeneous environment offering only limited computing resources. In this work, we propose a novel Pareto-based approach for application placement close to the data sources called Multiobjective IoT application Placement in fOg (MAPO). MAPO models applications based on a finite state machine and uses three conflicting optimization objectives, namely completion time, energy consumption, and economic cost, considering both the computation and communication aspects. In contrast to existing solutions that optimize a single objective value, MAPO enables multi-objective energy and cost-aware application placement. To evaluate the quality of the MAPO placements, we created both simulated and real-world testbeds tailored for a set of medical IoT application case studies. Compared to the state-of-the-art approaches, MAPO reduces the economic cost by up to 27%, while decreasing the energy requirements by 23-68%, and optimizes the completion time by up to 7.3 times. 
653 |a Placement 
653 |a Energy requirements 
653 |a Multiple objective analysis 
653 |a Resource management 
653 |a Energy consumption 
653 |a Completion time 
653 |a Economic impact 
653 |a Cloud computing 
653 |a Finite state machines 
653 |a Computer simulation 
653 |a Optimization 
653 |a State-of-the-art reviews 
700 1 |a Kimovski, Dragi 
700 1 |a Prodan, Radu 
773 0 |t arXiv.org  |g (Aug 3, 2019), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2268889985/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1908.01153