KITE: high-performance accurate modelling of electronic structure and response functions of large molecules, disordered crystals and heterostructures
Guardado en:
| Publicado en: | arXiv.org (Mar 13, 2020), p. n/a |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , |
| Publicado: |
Cornell University Library, arXiv.org
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full text outside of ProQuest |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | We present KITE, a general purpose open-source tight-binding software for accurate real-space simulations of electronic structure and quantum transport properties of large-scale molecular and condensed systems with tens of billions of atomic orbitals (N~10^10). KITE's core is written in C++, with a versatile Python-based interface, and is fully optimised for shared memory multi-node CPU architectures, thus scalable, efficient and fast. At the core of KITE is a seamless spectral expansion of lattice Green's functions, which enables large-scale calculations of generic target functions with uniform convergence and fine control over energy resolution. Several functionalities are demonstrated, ranging from simulations of local density of states and photo-emission spectroscopy of disordered materials to large-scale computations of optical conductivity tensors and real-space wave-packet propagation in the presence of magneto-static fields and spin-orbit coupling. On-the-fly calculations of real-space Green's functions are carried out with an efficient domain decomposition technique, allowing KITE to achieve nearly ideal linear scaling in its multi-threading performance. Crystalline defects and disorder, including vacancies, adsorbates and charged impurity centers, can be easily set up with KITE's intuitive interface, paving the way to user-friendly large-scale quantum simulations of equilibrium and non-equilibrium properties of molecules, disordered crystals and heterostructures subject to a variety of perturbations and external conditions. |
|---|---|
| ISSN: | 2331-8422 |
| DOI: | 10.1098/rsos.191809 |
| Fuente: | Engineering Database |