KITE: high-performance accurate modelling of electronic structure and response functions of large molecules, disordered crystals and heterostructures

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Mar 13, 2020), p. n/a
Yazar: João, Simão M
Diğer Yazarlar: Anđelković, Miša, Covaci, Lucian, Rappoport, Tatiana, João M V P Lopes, Ferreira, Aires
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 2305321919
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1098/rsos.191809  |2 doi 
035 |a 2305321919 
045 0 |b d20200313 
100 1 |a João, Simão M 
245 1 |a KITE: high-performance accurate modelling of electronic structure and response functions of large molecules, disordered crystals and heterostructures 
260 |b Cornell University Library, arXiv.org  |c Mar 13, 2020 
513 |a Working Paper 
520 3 |a We present KITE, a general purpose open-source tight-binding software for accurate real-space simulations of electronic structure and quantum transport properties of large-scale molecular and condensed systems with tens of billions of atomic orbitals (N~10^10). KITE's core is written in C++, with a versatile Python-based interface, and is fully optimised for shared memory multi-node CPU architectures, thus scalable, efficient and fast. At the core of KITE is a seamless spectral expansion of lattice Green's functions, which enables large-scale calculations of generic target functions with uniform convergence and fine control over energy resolution. Several functionalities are demonstrated, ranging from simulations of local density of states and photo-emission spectroscopy of disordered materials to large-scale computations of optical conductivity tensors and real-space wave-packet propagation in the presence of magneto-static fields and spin-orbit coupling. On-the-fly calculations of real-space Green's functions are carried out with an efficient domain decomposition technique, allowing KITE to achieve nearly ideal linear scaling in its multi-threading performance. Crystalline defects and disorder, including vacancies, adsorbates and charged impurity centers, can be easily set up with KITE's intuitive interface, paving the way to user-friendly large-scale quantum simulations of equilibrium and non-equilibrium properties of molecules, disordered crystals and heterostructures subject to a variety of perturbations and external conditions. 
653 |a Crystal structure 
653 |a Simulation 
653 |a Energy resolution 
653 |a Domain decomposition methods 
653 |a Response functions 
653 |a Source code 
653 |a Mathematical analysis 
653 |a Transport properties 
653 |a Lattice vacancies 
653 |a Molecular structure 
653 |a Heterostructures 
653 |a Adsorbates 
653 |a Tensors 
653 |a Spin-orbit interactions 
653 |a Crystal defects 
653 |a Wave propagation 
653 |a Green's functions 
653 |a Coupling (molecular) 
653 |a Electronic structure 
653 |a Computer simulation 
653 |a Quantum transport 
700 1 |a Anđelković, Miša 
700 1 |a Covaci, Lucian 
700 1 |a Rappoport, Tatiana 
700 1 |a João M V P Lopes 
700 1 |a Ferreira, Aires 
773 0 |t arXiv.org  |g (Mar 13, 2020), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2305321919/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1910.05194