Social Influence Prediction with Train and Test Time Augmentation for Graph Neural Networks

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:arXiv.org (Apr 23, 2021), p. n/a
المؤلف الرئيسي: Bo, Hongbo
مؤلفون آخرون: McConville, Ryan, Hong, Jun, Liu, Weiru
منشور في:
Cornell University Library, arXiv.org
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full text outside of ProQuest
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:Data augmentation has been widely used in machine learning for natural language processing and computer vision tasks to improve model performance. However, little research has studied data augmentation on graph neural networks, particularly using augmentation at both train- and test-time. Inspired by the success of augmentation in other domains, we have designed a method for social influence prediction using graph neural networks with train- and test-time augmentation, which can effectively generate multiple augmented graphs for social networks by utilising a variational graph autoencoder in both scenarios. We have evaluated the performance of our method on predicting user influence on multiple social network datasets. Our experimental results show that our end-to-end approach, which jointly trains a graph autoencoder and social influence behaviour classification network, can outperform state-of-the-art approaches, demonstrating the effectiveness of train- and test-time augmentation on graph neural networks for social influence prediction. We observe that this is particularly effective on smaller graphs.
تدمد:2331-8422
المصدر:Engineering Database