Approximate Petz recovery from the geometry of density operators

Salvato in:
Dettagli Bibliografici
Pubblicato in:arXiv.org (Mar 18, 2022), p. n/a
Autore principale: Cree, Sam
Altri autori: Sorce, Jonathan
Pubblicazione:
Cornell University Library, arXiv.org
Soggetti:
Accesso online:Citation/Abstract
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
Descrizione
Abstract:We derive a new bound on the effectiveness of the Petz map as a universal recovery channel in approximate quantum error correction using the second sandwiched R\'{e}nyi relative entropy \(\tilde{D}_{2}\). For large Hilbert spaces, our bound implies that the Petz map performs quantum error correction with order-\(\epsilon\) accuracy whenever the data processing inequality for \(\tilde{D}_{2}\) is saturated up to terms of order \(\epsilon^2\) times the inverse Hilbert space dimension. Conceptually, our result is obtained by extending arXiv:2011.03473, in which we studied exact saturation of the data processing inequality using differential geometry, to the case of approximate saturation. Important roles are played by (i) the fact that the exponential of the second sandwiched R\'{e}nyi relative entropy is quadratic in its first argument, and (ii) the observation that the second sandwiched R\'{e}nyi relative entropy satisfies the data processing inequality even when its first argument is a non-positive Hermitian operator.
ISSN:2331-8422
DOI:10.1007/s00220-022-04357-2
Fonte:Engineering Database