Approximate Petz recovery from the geometry of density operators
Đã lưu trong:
| Xuất bản năm: | arXiv.org (Mar 18, 2022), p. n/a |
|---|---|
| Tác giả chính: | |
| Tác giả khác: | |
| Được phát hành: |
Cornell University Library, arXiv.org
|
| Những chủ đề: | |
| Truy cập trực tuyến: | Citation/Abstract Full text outside of ProQuest |
| Các nhãn: |
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
|
| Bài tóm tắt: | We derive a new bound on the effectiveness of the Petz map as a universal recovery channel in approximate quantum error correction using the second sandwiched R\'{e}nyi relative entropy \(\tilde{D}_{2}\). For large Hilbert spaces, our bound implies that the Petz map performs quantum error correction with order-\(\epsilon\) accuracy whenever the data processing inequality for \(\tilde{D}_{2}\) is saturated up to terms of order \(\epsilon^2\) times the inverse Hilbert space dimension. Conceptually, our result is obtained by extending arXiv:2011.03473, in which we studied exact saturation of the data processing inequality using differential geometry, to the case of approximate saturation. Important roles are played by (i) the fact that the exponential of the second sandwiched R\'{e}nyi relative entropy is quadratic in its first argument, and (ii) the observation that the second sandwiched R\'{e}nyi relative entropy satisfies the data processing inequality even when its first argument is a non-positive Hermitian operator. |
|---|---|
| số ISSN: | 2331-8422 |
| DOI: | 10.1007/s00220-022-04357-2 |
| Nguồn: | Engineering Database |