Assessing data mining algorithms to predict the quality of groundwater resources for determining irrigation hazard

Guardado en:
Detalles Bibliográficos
Publicado en:Environmental Monitoring and Assessment vol. 195, no. 2 (Feb 2023), p. 319
Autor principal: Masoudi, Reyhaneh
Otros Autores: Mousavi, Seyed Roohollah, Rahimabadi, Pouyan Dehghan, Panahi, Mehdi, Rahmani, Asghar
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2767700198
003 UK-CbPIL
022 |a 0167-6369 
022 |a 1573-2959 
024 7 |a 10.1007/s10661-022-10909-9  |2 doi 
035 |a 2767700198 
045 2 |b d20230201  |b d20230228 
084 |a 108264  |2 nlm 
100 1 |a Masoudi, Reyhaneh  |u University of Tehran, Tehran, Iran (GRID:grid.46072.37) (ISNI:0000 0004 0612 7950) 
245 1 |a Assessing data mining algorithms to predict the quality of groundwater resources for determining irrigation hazard 
260 |b Springer Nature B.V.  |c Feb 2023 
513 |a Journal Article 
520 3 |a This study aims to compare three popular machine learning (ML) algorithms including random forest (RF), boosting regression tree (BRT), and multinomial logistic regression (MnLR) for spatial prediction of groundwater quality classes and mapping it for salinity hazard. Three hundred eighty-six groundwater samples were collected from an agriculturally intensive area in Fars Province, Iran, and nine hydro-chemical parameters were defined and interpreted. Variance inflation factor and Pearson’s correlations were used to check collinearity between variables. Thereinafter, the performance of ML models was evaluated by statistical indices, namely, overall accuracy (OA) and Kappa index obtained from the confusion matrix. The results showed that the RF model was more accurate than other models with the slight difference. Moreover, the analysis of relative importance also indicated that sodium adsorption ratio (SAR) and pH have the most impact parameters in explaining groundwater quality classes, respectively. In this research, applied ML algorithms along with the hydro-chemical parameters affecting the quality of ground water can lead to produce spatial distribution maps with high accuracy for managing irrigation practice. 
653 |a Parameters 
653 |a Groundwater quality 
653 |a Groundwater resources 
653 |a Water sampling 
653 |a Groundwater irrigation 
653 |a Sodium 
653 |a Data mining 
653 |a Machine learning 
653 |a Irrigation 
653 |a Salinity 
653 |a Water resources 
653 |a Spatial distribution 
653 |a Groundwater 
653 |a Accuracy 
653 |a Algorithms 
653 |a Mathematical models 
653 |a Regression analysis 
653 |a Collinearity 
653 |a Environmental science 
653 |a Maps 
653 |a Hydrochemicals 
653 |a Data analysis 
653 |a Water analysis 
653 |a Statistical analysis 
653 |a Water quality 
653 |a Environmental monitoring 
653 |a Environmental 
700 1 |a Mousavi, Seyed Roohollah  |u University of Tehran, Tehran, Iran (GRID:grid.46072.37) (ISNI:0000 0004 0612 7950) 
700 1 |a Rahimabadi, Pouyan Dehghan  |u University of Tehran, Tehran, Iran (GRID:grid.46072.37) (ISNI:0000 0004 0612 7950) 
700 1 |a Panahi, Mehdi  |u University of Zanjan, Water Engineering Department, Faculty of Agriculture, Zanjan, Iran (GRID:grid.412673.5) (ISNI:0000 0004 0382 4160) 
700 1 |a Rahmani, Asghar  |u University of Tehran, Tehran, Iran (GRID:grid.46072.37) (ISNI:0000 0004 0612 7950) 
773 0 |t Environmental Monitoring and Assessment  |g vol. 195, no. 2 (Feb 2023), p. 319 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2767700198/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2767700198/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2767700198/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch