Space-bounded quantum state testing via space-efficient quantum singular value transformation

保存先:
書誌詳細
出版年:arXiv.org (May 23, 2024), p. n/a
第一著者: François Le Gall
その他の著者: Liu, Yupan, Wang, Qisheng
出版事項:
Cornell University Library, arXiv.org
主題:
オンライン・アクセス:Citation/Abstract
Full text outside of ProQuest
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 2848591050
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2848591050 
045 0 |b d20240523 
100 1 |a François Le Gall 
245 1 |a Space-bounded quantum state testing via space-efficient quantum singular value transformation 
260 |b Cornell University Library, arXiv.org  |c May 23, 2024 
513 |a Working Paper 
520 3 |a Driven by exploring the power of quantum computation with a limited number of qubits, we present a novel complete characterization for space-bounded quantum computation, which encompasses settings with one-sided error (unitary coRQL) and two-sided error (BQL), approached from a quantum state testing perspective: - The first family of natural complete problems for unitary coRQL, i.e., space-bounded quantum state certification for trace distance and Hilbert-Schmidt distance; - A new family of natural complete problems for BQL, i.e., space-bounded quantum state testing for trace distance, Hilbert-Schmidt distance, and quantum entropy difference. In the space-bounded quantum state testing problem, we consider two logarithmic-qubit quantum circuits (devices) denoted as \(Q_0\) and \(Q_1\), which prepare quantum states \(\rho_0\) and \(\rho_1\), respectively, with access to their ``source code''. Our goal is to decide whether \(\rho_0\) is \(\epsilon_1\)-close to or \(\epsilon_2\)-far from \(\rho_1\) with respect to a specified distance-like measure. Interestingly, unlike time-bounded state testing problems, our results reveal that the space-bounded state testing problems all correspond to the same class. Moreover, our algorithms on the trace distance inspire an algorithmic Holevo-Helstrom measurement, implying QSZK is in QIP(2) with a quantum linear-space honest prover. Our results primarily build upon a space-efficient variant of the quantum singular value transformation (QSVT) introduced by Gilyén, Su, Low, and Wiebe (STOC 2019), which is of independent interest. Our technique provides a unified approach for designing space-bounded quantum algorithms. Specifically, we show that implementing QSVT for any bounded polynomial that approximates a piecewise-smooth function incurs only a constant overhead in terms of the space required for special forms of the projected unitary encoding. 
653 |a Algorithms 
653 |a Quantum computing 
653 |a Source code 
653 |a Helium 
653 |a Polynomials 
653 |a Qubits (quantum computing) 
700 1 |a Liu, Yupan 
700 1 |a Wang, Qisheng 
773 0 |t arXiv.org  |g (May 23, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2848591050/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2308.05079