Machine Learning-based Calibration Approach for Low-cost Air Pollution Sensors MQ-7 and MQ-131

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Nature Environment and Pollution Technology vol. 23, no. 1 (Mar 2024), p. 401
Hoofdauteur: Rathnayake, L R S D
Andere auteurs: Sakura, G B, Weerasekara, N A, Sandaruwan, P D
Gepubliceerd in:
Technoscience Publications
Onderwerpen:
Online toegang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 2957757711
003 UK-CbPIL
022 |a 0972-6268 
022 |a 2395-3454 
022 |a 0971-4871 
024 7 |a 10.46488/NEPT.2024.v23i01.034  |2 doi 
035 |a 2957757711 
045 2 |b d20240301  |b d20240331 
084 |a 179233  |2 nlm 
100 1 |a Rathnayake, L R S D  |u Civil and Environmental Department, Faculty of Technology, University of Sri Jayewardenepura, Sri Lanka 
245 1 |a Machine Learning-based Calibration Approach for Low-cost Air Pollution Sensors MQ-7 and MQ-131 
260 |b Technoscience Publications  |c Mar 2024 
513 |a Feature 
520 3 |a Air quality is a vital concern globally, and Sri Lanka, according to WHO statistics, faces challenges in achieving optimal air quality levels. To address this, we introduced an innovative loT-based Air Pollution Monitoring (ARM) Box. This solution incorporates readily available Commercial Off-The-Shelf (COTS) sensors, specifically MQ-7 and MQ-131, for measuring concentrations of Carbon Monoxide (CO) and Ozone (03) ,Arduino and "ThingSpeak" platform. Yet, those COTS sensors are not factory-calibrated. Therefore, we implemented machine learning algorithms, including linear regression and deep neural network models, to enhance the accuracy of CO and 03 concentration measurements from these non-calibrated sensors. Our findings indicate promising correlations when dealing with MQ-7 and MQ-131 measurements after removing outliers. 
651 4 |a Sri Lanka 
653 |a Outliers (statistics) 
653 |a Humidity 
653 |a Regression analysis 
653 |a Sensors 
653 |a Carbon monoxide 
653 |a Artificial neural networks 
653 |a Calibration 
653 |a Air quality 
653 |a Pollution monitoring 
653 |a Air pollution 
653 |a Machine learning 
653 |a Outdoor air quality 
653 |a Air monitoring 
653 |a Visualization 
653 |a Learning algorithms 
653 |a Neural networks 
653 |a Variables 
653 |a Algorithms 
653 |a Economic 
653 |a Environmental 
700 1 |a Sakura, G B  |u Civil and Environmental Department, Faculty of Technology, University of Sri Jayewardenepura, Sri Lanka 
700 1 |a Weerasekara, N A  |u Civil and Environmental Department, Faculty of Technology, University of Sri Jayewardenepura, Sri Lanka 
700 1 |a Sandaruwan, P D  |u Department of Computer Science, University of Ruhuna, Matara, Sri Lanka 
773 0 |t Nature Environment and Pollution Technology  |g vol. 23, no. 1 (Mar 2024), p. 401 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2957757711/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2957757711/fulltext/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2957757711/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch