Quantile balancing inverse probability weighting for non-probability samples

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:arXiv.org (Dec 20, 2024), p. n/a
Kaituhi matua: Beręsewicz, Maciej
Ētahi atu kaituhi: Szymkowiak, Marcin, Chlebicki, Piotr
I whakaputaina:
Cornell University Library, arXiv.org
Ngā marau:
Urunga tuihono:Citation/Abstract
Full text outside of ProQuest
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
Whakaahuatanga
Whakarāpopotonga:The use of non-probability data sources for statistical purposes has become increasingly popular in recent years, also in official statistics. However, statistical inference based on non-probability samples is made more difficult by nature of them being biased and not representative of the target population. In this paper we propose quantile balancing inverse probability weighting estimator (QBIPW) for non-probability samples. We use the idea of Harms and Duchesne (2006) which allows to include quantile information in the estimation process so known totals and distribution for auxiliary variables are being reproduced. We discuss the estimation of the QBIPW probabilities and its variance. Our simulation study has demonstrated that the proposed estimators are robust against model mis-specification and, as a result, help to reduce bias and mean squared error. Finally, we applied the proposed methods to estimate the share of vacancies aimed at Ukrainian workers in Poland using an integrated set of administrative and survey data about job vacancies.
ISSN:2331-8422
Puna:Engineering Database