L-MAE: Longitudinal masked auto-encoder with time and severity-aware encoding for diabetic retinopathy progression prediction

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Mar 24, 2024), p. n/a
Autor principal: Zeghlache, Rachid
Otros Autores: Pierre-Henri Conze, Mostafa El Habib Daho, Li, Yihao, Rezaei, Alireza, Hugo Le Boité, Tadayoni, Ramin, Massin, Pascal, Cochener, Béatrice, Ikram Brahim, Quellec, Gwenolé, Lamard, Mathieu
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2986603353
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2986603353 
045 0 |b d20240324 
100 1 |a Zeghlache, Rachid 
245 1 |a L-MAE: Longitudinal masked auto-encoder with time and severity-aware encoding for diabetic retinopathy progression prediction 
260 |b Cornell University Library, arXiv.org  |c Mar 24, 2024 
513 |a Working Paper 
520 3 |a Pre-training strategies based on self-supervised learning (SSL) have proven to be effective pretext tasks for many downstream tasks in computer vision. Due to the significant disparity between medical and natural images, the application of typical SSL is not straightforward in medical imaging. Additionally, those pretext tasks often lack context, which is critical for computer-aided clinical decision support. In this paper, we developed a longitudinal masked auto-encoder (MAE) based on the well-known Transformer-based MAE. In particular, we explored the importance of time-aware position embedding as well as disease progression-aware masking. Taking into account the time between examinations instead of just scheduling them offers the benefit of capturing temporal changes and trends. The masking strategy, for its part, evolves during follow-up to better capture pathological changes, ensuring a more accurate assessment of disease progression. Using OPHDIAT, a large follow-up screening dataset targeting diabetic retinopathy (DR), we evaluated the pre-trained weights on a longitudinal task, which is to predict the severity label of the next visit within 3 years based on the past time series examinations. Our results demonstrated the relevancy of both time-aware position embedding and masking strategies based on disease progression knowledge. Compared to popular baseline models and standard longitudinal Transformers, these simple yet effective extensions significantly enhance the predictive ability of deep classification models. 
653 |a Masking 
653 |a Diabetes 
653 |a Self-supervised learning 
653 |a Computer vision 
653 |a Machine learning 
653 |a Computer aided decision processes 
653 |a Coders 
653 |a Diabetic retinopathy 
653 |a Transformers 
653 |a Embedding 
653 |a Medical imaging 
700 1 |a Pierre-Henri Conze 
700 1 |a Mostafa El Habib Daho 
700 1 |a Li, Yihao 
700 1 |a Rezaei, Alireza 
700 1 |a Hugo Le Boité 
700 1 |a Tadayoni, Ramin 
700 1 |a Massin, Pascal 
700 1 |a Cochener, Béatrice 
700 1 |a Ikram Brahim 
700 1 |a Quellec, Gwenolé 
700 1 |a Lamard, Mathieu 
773 0 |t arXiv.org  |g (Mar 24, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2986603353/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2403.16272