Simulating electronic structure on bosonic quantum computers

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:arXiv.org (Oct 17, 2024), p. n/a
Egile nagusia: Dutta, Rishab
Beste egile batzuk: Vu, Nam P, Xu, Chuzhi, Lyu, Ningyi, Soudackov, Alexander V, Xiaohan Dan, Li, Haote, Wang, Chen, Batista, Victor S
Argitaratua:
Cornell University Library, arXiv.org
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full text outside of ProQuest
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3040139869
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3040139869 
045 0 |b d20241017 
100 1 |a Dutta, Rishab 
245 1 |a Simulating electronic structure on bosonic quantum computers 
260 |b Cornell University Library, arXiv.org  |c Oct 17, 2024 
513 |a Working Paper 
520 3 |a Computations with quantum harmonic oscillators, or qumodes, represents a promising and rapidly evolving approach for quantum computing. Unlike qubits, which are two-level quantum systems, bosonic qumodes can have an infinite number of discrete levels, and can also be represented using continuous-variable bases. One of the most promising applications of quantum computing is the simulation of many-fermion problems, such as those encountered in molecular electronic structure calculations. In this work, we demonstrate how an electronic structure Hamiltonian can be transformed into a system of qumodes through qubit-assisted fermion-to-qumode mapping. After mapping the electronic structure Hamiltonian to a qubit Hamiltonian, we show how to represent it as a linear combination of bosonic gates, which can be universally controlled by qubits. We illustrate the potential of this mapping by applying it to the dihydrogen molecule, mapping the four-qubit Hamiltonian to a qubit-qumode system. The preparation of the trial qumode state and the computation of the expectation value are achieved by coupling the mapped qubit-qumode system with an ancilla qubit. This enables the formulation of bosonic variational quantum eigensolver (VQE) algorithms, such as those on hybrid qubit-qumode gates like echoed conditional displacement (ECD-VQE) or selective number-dependent arbitrary phase (SNAP-VQE), to determine the ground state of the dihydrogen molecule. In circuit quantum electrodynamics (cQED) hardware, these methods can be efficiently implemented using a microwave resonator coupled to two superconducting transmon qubits. We anticipate the reported work will pave the way for simulating many-fermion systems by leveraging the potential of hybrid qubit-qumode quantum devices. 
653 |a Quantum computing 
653 |a Electrons 
653 |a Quantum computers 
653 |a Harmonic oscillators 
653 |a Continuity (mathematics) 
653 |a Fermions 
653 |a Electronic structure 
653 |a Simulation 
653 |a Molecular structure 
653 |a Qubits (quantum computing) 
700 1 |a Vu, Nam P 
700 1 |a Xu, Chuzhi 
700 1 |a Lyu, Ningyi 
700 1 |a Soudackov, Alexander V 
700 1 |a Xiaohan Dan 
700 1 |a Li, Haote 
700 1 |a Wang, Chen 
700 1 |a Batista, Victor S 
773 0 |t arXiv.org  |g (Oct 17, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3040139869/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2404.10222