Exponential quantum advantages in learning quantum observables from classical data

Сохранить в:
Библиографические подробности
Опубликовано в::arXiv.org (Dec 20, 2024), p. n/a
Главный автор: Molteni, Riccardo
Другие авторы: Casper Gyurik, Dunjko, Vedran
Опубликовано:
Cornell University Library, arXiv.org
Предметы:
Online-ссылка:Citation/Abstract
Full text outside of ProQuest
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3051511455
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3051511455 
045 0 |b d20241220 
100 1 |a Molteni, Riccardo 
245 1 |a Exponential quantum advantages in learning quantum observables from classical data 
260 |b Cornell University Library, arXiv.org  |c Dec 20, 2024 
513 |a Working Paper 
520 3 |a Quantum computers are believed to bring computational advantages in simulating quantum many body systems. However, recent works have shown that classical machine learning algorithms are able to predict numerous properties of quantum systems with classical data. Despite various examples of learning tasks with provable quantum advantages being proposed, they all involve cryptographic functions and do not represent any physical scenarios encountered in laboratory settings. In this paper we prove quantum advantages for the physically relevant task of learning quantum observables from classical (measured out) data. We consider two types of observables: first we prove a learning advantage for linear combinations of Pauli strings, then we extend the result for a broader case of unitarily parametrized observables. For each type of observable we delineate the boundaries that separate physically relevant tasks which classical computers can solve using data from quantum measurements, from those where a quantum computer is still necessary for data analysis. Differently from previous works, we base our classical hardness results on the weaker assumption that \(\mathsf{BQP}\) hard processes cannot be simulated by polynomial-size classical circuits and provide a non-trivial quantum learning algorithm. Our results shed light on the utility of quantum computers for machine learning problems in the domain of quantum many body physics, thereby suggesting new directions where quantum learning improvements may emerge. 
653 |a Data analysis 
653 |a Machine learning 
653 |a Quantum computing 
653 |a Algorithms 
653 |a Computers 
653 |a Cryptography 
653 |a Quantum computers 
653 |a Cognitive tasks 
700 1 |a Casper Gyurik 
700 1 |a Dunjko, Vedran 
773 0 |t arXiv.org  |g (Dec 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3051511455/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2405.02027