Tree based Regression Models for Predicting the Compressive Strength of Concrete at High Temperature

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Cyhoeddwyd yn:IOP Conference Series. Earth and Environmental Science vol. 1327, no. 1 (Apr 2024), p. 012015
Prif Awdur: Arora, Gourav
Awduron Eraill: Kumar, Devender, Singh, Balraj
Cyhoeddwyd:
IOP Publishing
Pynciau:
Mynediad Ar-lein:Citation/Abstract
Full Text - PDF
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!

MARC

LEADER 00000nab a2200000uu 4500
001 3055936810
003 UK-CbPIL
022 |a 1755-1307 
022 |a 1755-1315 
024 7 |a 10.1088/1755-1315/1327/1/012015  |2 doi 
035 |a 3055936810 
045 2 |b d20240401  |b d20240430 
100 1 |a Arora, Gourav  |u Assistant Professor, Civil Engineering Department, Panipat Institute of Engineering and Technology , Samalkha-132102 , India 
245 1 |a Tree based Regression Models for Predicting the Compressive Strength of Concrete at High Temperature 
260 |b IOP Publishing  |c Apr 2024 
513 |a Journal Article 
520 3 |a Predicting the compressive strength of concrete is a complicated process due to the heterogeneous mixture of concrete and high variable materials. Researchers have predicted the compressive strength of concrete for various mixes using soft computing models. In this research, compressive strength of concrete at high temperature with fly ash, super plasticizers, and fibre is predicted using three regression tree-based soft computing models (Random Forest, Random Tree, and Reduced-Error Pruning Tree (REP Tree)). The data used in this study is collected from the literature, and two-thirds of the total data is used for model training, while the remaining third is reserved for testing the prepared model. The model’s performance is evaluated based on scatter plots, variation plots, box plots, and prediction error rates, i.e., R, RMSE, and MAE. The results highlight the highest performance of the Random Forest model, with R of 0.9142; RMSE of 9.6285 MPa and MAE of 6.7931 MPa, outperforming the other competing models. Furthermore, the most influential parameter is determined using sensitivity analysis. Thus, the Random Forest model is the model that can be used for predicting the compressive strength of concrete at high temperatures. 
653 |a Performance evaluation 
653 |a Models 
653 |a Soft computing 
653 |a Sensitivity analysis 
653 |a Parameter sensitivity 
653 |a Regression analysis 
653 |a Regression models 
653 |a High temperature 
653 |a Fly ash 
653 |a Concrete mixes 
653 |a Decision trees 
653 |a Root-mean-square errors 
653 |a Compressive strength 
653 |a Economic 
653 |a Environmental 
700 1 |a Kumar, Devender  |u Assistant Professor, Civil Engineering Department, Panipat Institute of Engineering and Technology , Samalkha-132102 , India 
700 1 |a Singh, Balraj  |u Assistant Professor, Civil Engineering Department, Panipat Institute of Engineering and Technology , Samalkha-132102 , India 
773 0 |t IOP Conference Series. Earth and Environmental Science  |g vol. 1327, no. 1 (Apr 2024), p. 012015 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3055936810/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3055936810/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch