Data analysis and preprocessing techniques for air quality prediction: a survey

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Stochastic Environmental Research and Risk Assessment vol. 38, no. 6 (Jun 2024), p. 2095
المؤلف الرئيسي: Yu, Chengqing
مؤلفون آخرون: Tan, Jing, Cheng, Yihan, Mi, Xiwei
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:Air quality prediction technology can provide effective technical means for environmental governance. In recent years, due to the strong nonlinearity of data, there has been extensive research on data analysis and preprocessing techniques. This paper aims to comprehensively summarize and analyze the methods used in air quality forecasting, specifically focusing on four categories: data decomposition, dimensionality reduction, data correction, and spatial interpolation. Each method's purpose, characteristics, improvements, and implementation details are described in detail. The evaluation of data preprocessing methods is based on popularity, accuracy improvements, time consumption, maturity, and implementation difficulty. Among the existing methods, data decomposition and feature selection are commonly used and well-developed. However, outlier detection and spatial interpolation have limited applications and require further research. Furthermore, this paper discusses current challenges in applying these methods and future development trends, providing a valuable reference for future research.
تدمد:1436-3240
1436-3259
0931-1955
DOI:10.1007/s00477-024-02693-4
المصدر:Science Database