SemanticCSLAM: Using Environment Landmarks for Cooperative Simultaneous Localization and Mapping

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:IEEE Internet of Things Journal vol. 11, no. 14 (2024), p. 24739
Հիմնական հեղինակ: Li, Chunyu
Այլ հեղինակներ: Zhou, Baoding, Li, Qingquan
Հրապարակվել է:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3078094791
003 UK-CbPIL
022 |a 2327-4662 
024 7 |a 10.1109/JIOT.2024.3383272  |2 doi 
035 |a 3078094791 
045 2 |b d20240101  |b d20241231 
084 |a 267632  |2 nlm 
100 1 |a Li, Chunyu  |u Institute of Urban Smart Transportation and Safety Maintenance, Key Laboratory for Resilient Infrastructures of Coastal Cities, Ministry of Education, and the College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China 
245 1 |a SemanticCSLAM: Using Environment Landmarks for Cooperative Simultaneous Localization and Mapping 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2024 
513 |a Journal Article 
520 3 |a To improve the accuracy and efficiency of LiDAR mapping, cooperative simultaneous localization and mapping (SLAM) has been considered for complex large scenes. Recognizing the same positions and detecting global loop closures are important for achieving cooperative SLAM. However, most of the current position recognition and loop closure detection methods are based on images or point clouds. These methods may make mistakes if structures or textures are similar. To overcome this problem, we propose SemanticCSLAM, which is a Cooperative SLAM system that uses environment semantic landmarks for position recognition and loop closure detection. The proposed SemanticCSLAM consists of a single SLAM module based on A-LOAM, a trajectory alignment module and a global optimization module based on environment landmarks. Through the inertial measurement unit (IMU) carried by the agent, such as an unmanned ground vehicle (UGV), the environment landmarks can be detected. Based on these environment landmarks, the alignment module aligns trajectories from different agents. Finally, the loop closure detection and optimization module performs loop closure detection and global optimization based on these environment landmarks. We collected a data set, which contains indoor and outdoor data, for testing. These experimental results in different scenes show that the environment landmarks can effectively improve the performance of cooperative SLAM systems. 
653 |a Position measurement 
653 |a Trajectory measurement 
653 |a Unmanned ground vehicles 
653 |a Simultaneous localization and mapping 
653 |a Alignment 
653 |a Texture recognition 
653 |a Modules 
653 |a Trajectory optimization 
653 |a Inertial platforms 
653 |a Localization 
653 |a Global optimization 
653 |a Optimization 
700 1 |a Zhou, Baoding  |u Institute of Urban Smart Transportation and Safety Maintenance, Key Laboratory for Resilient Infrastructures of Coastal Cities, Ministry of Education, and the College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China 
700 1 |a Li, Qingquan  |u Guangdong Key Laboratory of Urban Informatics and the MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area (Shenzhen), Shenzhen University, Shenzhen, China 
773 0 |t IEEE Internet of Things Journal  |g vol. 11, no. 14 (2024), p. 24739 
786 0 |d ProQuest  |t ABI/INFORM Trade & Industry 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3078094791/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch