Research on the Evaluation of Baijiu Flavor Quality Based on Intelligent Sensory Technology Combined with Machine Learning

Guardado en:
Detalles Bibliográficos
Publicado en:Chemosensors vol. 12, no. 7 (2024), p. 125
Autor principal: Aliya
Otros Autores: Liu, Shi, Zhang, Danni, Cao, Yufa, Sun, Jinyuan, Jiang, Shui, Liu, Yuan
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3084716290
003 UK-CbPIL
022 |a 2227-9040 
024 7 |a 10.3390/chemosensors12070125  |2 doi 
035 |a 3084716290 
045 2 |b d20240101  |b d20241231 
084 |a 231440  |2 nlm 
100 1 |a Aliya  |u Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; <email>aly122150910101@sjtu.edu.cn</email> (A.); <email>jiangshui@sjtu.edu.cn</email> (S.J.) 
245 1 |a Research on the Evaluation of Baijiu Flavor Quality Based on Intelligent Sensory Technology Combined with Machine Learning 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Baijiu, one of the world’s six major distilled spirits, has an extremely rich flavor profile, which increases the complexity of its flavor quality evaluation. This study employed an electronic nose (E-nose) and electronic tongue (E-tongue) to detect 42 types of strong-aroma Baijiu. Linear discriminant analysis (LDA) was performed based on the different production origins, alcohol content, and grades. Twelve trained Baijiu evaluators participated in the quantitative descriptive analysis (QDA) of the Baijiu samples. By integrating characteristic values from the intelligent sensory detection data and combining them with the human sensory evaluation results, machine learning was used to establish a multi-submodel-based flavor quality prediction model and classification model for Baijiu. The results showed that different Baijiu samples could be well distinguished, with a prediction model R2 of 0.9994 and classification model accuracy of 100%. This study provides support for the establishment of a flavor quality evaluation system for Baijiu. 
651 4 |a China 
653 |a Accuracy 
653 |a Sensory evaluation 
653 |a Classification 
653 |a Discriminant analysis 
653 |a Pattern recognition systems 
653 |a Electronic noses 
653 |a Signal processing 
653 |a Flavors 
653 |a Metal oxides 
653 |a Machine learning 
653 |a Aroma 
653 |a Prediction models 
653 |a Learning algorithms 
653 |a Electronic tongues 
653 |a Quality assessment 
653 |a Flavor compounds 
653 |a Gases 
653 |a Technology assessment 
653 |a Sensory properties 
653 |a Sensors 
653 |a Sensory perception 
653 |a Spirits 
653 |a Alcohol 
653 |a Statistical methods 
700 1 |a Liu, Shi  |u Suqian Product Quality Supervision and Testing Institute, Suqian 223800, China; <email>sqcyf@163.com</email> 
700 1 |a Zhang, Danni  |u Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China; <email>dannizhang2019@sjtu.edu.cn</email> 
700 1 |a Cao, Yufa  |u Suqian Product Quality Supervision and Testing Institute, Suqian 223800, China; <email>sqcyf@163.com</email> 
700 1 |a Sun, Jinyuan  |u China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 102401, China 
700 1 |a Jiang, Shui  |u Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; <email>aly122150910101@sjtu.edu.cn</email> (A.); <email>jiangshui@sjtu.edu.cn</email> (S.J.) 
700 1 |a Liu, Yuan  |u Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; <email>aly122150910101@sjtu.edu.cn</email> (A.); <email>jiangshui@sjtu.edu.cn</email> (S.J.); School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China 
773 0 |t Chemosensors  |g vol. 12, no. 7 (2024), p. 125 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3084716290/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3084716290/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3084716290/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch