Machine Learning-Driven Detection of Cross-Site Scripting Attacks

Uloženo v:
Podrobná bibliografie
Vydáno v:Information vol. 15, no. 7 (2024), p. 420
Hlavní autor: Alhamyani, Rahmah
Další autoři: Alshammari, Majid
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Abstrakt:The ever-growing web application landscape, fueled by technological advancements, introduces new vulnerabilities to cyberattacks. Cross-site scripting (XSS) attacks pose a significant threat, exploiting the difficulty of distinguishing between benign and malicious scripts within web applications. Traditional detection methods struggle with high false-positive (FP) and false-negative (FN) rates. This research proposes a novel machine learning (ML)-based approach for robust XSS attack detection. We evaluate various models including Random Forest (RF), Logistic Regression (LR), Support Vector Machines (SVMs), Decision Trees (DTs), Extreme Gradient Boosting (XGBoost), Multi-Layer Perceptron (MLP), Convolutional Neural Networks (CNNs), Artificial Neural Networks (ANNs), and ensemble learning. The models are trained on a real-world dataset categorized into benign and malicious traffic, incorporating feature selection methods like Information Gain (IG) and Analysis of Variance (ANOVA) for optimal performance. Our findings reveal exceptional accuracy, with the RF model achieving 99.78% and ensemble models exceeding 99.64%. These results surpass existing methods, demonstrating the effectiveness of the proposed approach in securing web applications while minimizing FPs and FNs. This research offers a significant contribution to the field of web application security by providing a highly accurate and robust ML-based solution for XSS attack detection.
ISSN:2078-2489
DOI:10.3390/info15070420
Zdroj:Advanced Technologies & Aerospace Database